【论文阅读】YOLO-World | 开集目标检测

2024-04-19 06:04

本文主要是介绍【论文阅读】YOLO-World | 开集目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

  • Date:2024.02.22,Tencent AI Lab,华中科技大学
  • Paper:https://arxiv.org/pdf/2401.17270.pdf
  • Github:https://github.com/AILab-CVC/YOLO-World

论文解决的问题: 通过视觉语言建模和大规模数据集上的预训练来增强YOLO的开发词汇检测能力。

YOLO-world提出了一种prompt-then-detect范式:先提示,再检测。即将单词先转化成一系列离线的embedding,再将其重参数为模型的参数,参与到目标检测任务中来。相当于在部署的时候可以直接砍掉CLIP部分,直接把想要检测的类别的text embedding放到YOLO-World中进行推理,所以前向速度非常快。

文章目录

  • 1 文章贡献
  • 2 网络结构
    • 2.1 RepVL-PAN(Reparameterizable Vision-Language PAN)
    • 2.2 Text Contrastive Head
  • 3 训练过程
    • 3.1 损失函数
    • 3.2 训练策略
  • 4 训练数据的生成
  • 5 消融实验上的一些结论

1 文章贡献

  • 推出了一个可部署的开放词汇目标检测器YOLO-World,可用于部署。具有较强的零样本能力,在LVIS数据集上的map指标为35.4,fps为52(V100);
  • 提出了一个可重参数化的网络的结构RepVL-PAN来连接视觉和文本特征;

2 网络结构

在这里插入图片描述

  • text encoder使用的预训练的CLIP的text encoder,当文本是描述时,使用n-gram算法提取名词
  • 文本的特征于图像的特征(multi-scale)在RepVL-PAN结构中进行融合
  • RepVL-PAN输出Image-aware的text embedding,检测段输出bbox和text-aware的image embedding
  • 最后再通过计算text embedding和image embedding之间距离来判断目标框中的类别
  • YOLO backbone使用的是YOLOv8

2.1 RepVL-PAN(Reparameterizable Vision-Language PAN)

在这里插入图片描述

  • Text-guide CSPLayer: 采用max-sigmoid attention来实现文本和图像的融合其中 X l X_l Xl是来自不同层的图像特征,W是text embedding,计算特征图与text embedding的相似度矩阵,取最大值在sigmoid后作为权重加权原特征图
    X l ′ = X l ⋅ δ ( max ⁡ j ∈ { 1.. C } ( X l W j ⊤ ) ) ⊤ X_l^{\prime}=X_l \cdot \delta\left(\max _{j \in\{1 . . C\}}\left(X_l W_j^{\top}\right)\right)^{\top} Xl=Xlδ(j{1..C}max(XlWj))
    不过在代码实现的时候,其实concat了每一个block的输出:
    在这里插入图片描述

    # yolo_world/models/layers/yolo_bricks.py:145行
    def forward(self, x: Tensor, guide: Tensor) -> Tensor:"""Forward process."""x_main = self.main_conv(x)x_main = list(x_main.split((self.mid_channels, self.mid_channels), 1))x_main.extend(blocks(x_main[-1]) for blocks in self.blocks)x_main.append(self.attn_block(x_main[-1], guide))return self.final_conv(torch.cat(x_main, 1))
    
  • Image-Pooling Attention: 利用图像感知信息增强text embedding,文本嵌入的更新方式如下:
    W ′ = W + MultiHead-Attention ( W , X ^ , X ^ ) W^{\prime}=W+\text{MultiHead-Attention}(W,\hat X, \hat X) W=W+MultiHead-Attention(W,X^,X^)
    X是来自于3个不同尺度的图像特征,对每个尺度进行最大池化max-pooling,得到3x3大小的特征图,3组就是27个patch-token。

2.2 Text Contrastive Head

在这里插入图片描述
YOLO-World的检测头还是复用了YOLOv8的解耦头,只不过将分类分支修改成了object embedding。object embedding与text embedding需要先进行L2范数归一化,再进行距离计算,其计算公式如下:
s k , j = α ∣ ∣ e k ∣ ∣ 2 ∗ ∣ ∣ w j ∣ ∣ 2 + β s_{k,j} = \alpha ||e_k||^2*||w_j||^2 + \beta sk,j=α∣∣ek2∣∣wj2+β
其中 s k , j s_{k,j} sk,j表示文本 w j w_j wj与目标嵌入 e k e_k ek之间的距离, α \alpha α β \beta β是可学习的比例因子和位移因子。

3 训练过程

3.1 损失函数

  • 输出K个预测结果和其对应的gt:{box,text},使用TaskAlignAssigner进行匹配。匹配后通过计算object-text之间的交叉熵,也就是所谓的Region-text constrastive loss(没错,就是CLIP中Image-text constrastive loss,只不过这里不是使用全图的embedding,而是使用检测区域的embedding)。
  • 使用IoU loss和DFL(Distribute Focal Loss)来计算box的回归损失,这就意味着yolo-world使用的也是解耦头,并将回归任务转化成了分类任务。最后的总loss为:
    L ( I ) = L c o n + λ i ( L i o u + L d f l ) L(I) = L_{con} + \lambda_i(L_{iou} + L_{dfl}) L(I)=Lcon+λi(Liou+Ldfl)
    其中 λ i \lambda_i λi是indicator factor(指标因子),当图像来自于detection或者grounding data时设置为1,来自于image-text时设置为0。

3.2 训练策略

训练使用在线词汇表,推理使用离线词汇表。

  • 训练时:

    • 输入图片:4张组成的mosaic图片
    • 在线词汇表:T
    • 每次训练的时候需要从词汇表中抽取图片中含有的N个名词,再随机抽选80-N个不存在于该图中的目标名称,因此每次送入网络中的名词数量默认为80个
  • 测试时: 设置需要的词,并直接获取词向量参与到目标检测中,而不再用CLIP进行编码。

  • 其他细节:

    • 训练框架:MMYOLO
    • Text encoder:预训练的CLIP
    • GPU:32个V100
    • Batch:512
    • 数据增强:随机色彩、翻转、仿射、4张mosaic

4 训练数据的生成

文章中设计了一个数据生产流程,对CC3M中的246K图片生成了821K的伪标注。
在这里插入图片描述
其生成流程如下:

  1. 提取名词短语: n-gram
  2. 伪标签(pseudo label): 使用预训练的开放词汇检测器(GLIP),给每个图像给定的名词短语生成检测框,从而提供粗略的region-text pairs
  3. 过滤(filter): 使用预训练的CLIP来评估region-text pairs的相关性,过滤掉相关性低的注释和图像。给定图像I,图像描述T和粗略的region-text对 ( B i , t i , c i ) (B_i,t_i,c_i) (Bitici)
    3.1. 计算Image-text score得到S(img)
    3.2. 裁出region区域,计算region-text的相似度S(region)
    3.3. [可选] Re-labeling:裁剪后的图片与所有名词计算相似度,选择最高的名词作为该区域的text,用于纠正GLIP错标的文本
    3.4. Rescoring:用region-text的相似度S(region)对置信度重新评分 c i = ( c i ∗ s i r e g i o n ) c_i = \sqrt{(c_i * s^{region}_i)} ci=(cisiregion)
    3.5. 区域级过滤(Region-level filtering):根据文本分成不同的组,同类别使用NMS(0.5),过滤置信度低的(0.3)
    3.6. 图像级过滤(Image-level filtering):计算保留的所有region的平均分数,得到图像级置信度分数 S = ( S ( i m g ) ∗ S ( r e g i o n ) ) S = \sqrt{(S(img) * S(region))} S=(S(img)S(region)) ,保留分数大于0.3的图像。
  4. 使用NMS过滤冗余的检测框。
  • 训练集数据情况
    在这里插入图片描述
  • 测试集数据情况: 在LVIS进行zero-shot evaluation
    • 包含1203个类别,远超训练集的类别
    • 主要在LVIS minival上测试固定AP
    • 最大预测数量设置为1000
      在这里插入图片描述
      总结:可以看出检测效果非常Amazing,而且更关键的是速度非常快! 其速度快的原因在于测试的时候,可以直接将text embeding先算出来,让后作为YOLO-World的参数来进行前向推理。直接砍掉了CLIP在推理阶段的耗时。这个思路非常nice!

5 消融实验上的一些结论

结论一:增加高质量数据效果提升显著。
在这里插入图片描述
验证Text-guided CSPLayers和Image-Pooling Attention的作用分别可以提升0.8和0.3个点,但是只加入GQA数据集可以直接提升7.2个点,还是证明了加入数据的有效性。

*注:GQA是斯坦福大学教授 Christopher Manning 及其学生 Drew Hudson 一同打造的全新图像场景图问答数据集,旨在推动场景理解与视觉问答研究领域的进步,详细数据链接:https://cs.stanford.edu/people/dorarad/gqa * 。

结论二:在YOLO-Wolrd里面,CLIP优于BERT。
在这里插入图片描述

这篇关于【论文阅读】YOLO-World | 开集目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916768

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

OmniGlue论文详解(特征匹配)

OmniGlue论文详解(特征匹配) 摘要1. 引言2. 相关工作2.1. 广义局部特征匹配2.2. 稀疏可学习匹配2.3. 半稠密可学习匹配2.4. 与其他图像表示匹配 3. OmniGlue3.1. 模型概述3.2. OmniGlue 细节3.2.1. 特征提取3.2.2. 利用DINOv2构建图形。3.2.3. 信息传播与新的指导3.2.4. 匹配层和损失函数3.2.5. 与Super