Installing, Troubleshooting, and Repairing Wireless Networks

2024-04-19 01:58

本文主要是介绍Installing, Troubleshooting, and Repairing Wireless Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp
PRACTICAL, AUTHORITATIVE GUIDANCE ON KEEPING A WIRELESS NETWORK WORKING HARD FOR YOUR BUSINESS! With annual equipment sales projected to grow to more than $5 billion by mid-decade, wireless networking is clearly a technology whose time has come. But with many wireless networks expected to be created at both small offices and home offices, where can people charged with maintaining them get comprehensive information to help them do just that? The answer is McGraw-Hill's Installing, Troubleshooting, and Repairing Wireless Networks. Written with insight by a noted IT expert and commentator, this book provides comprehensive coverage of this rapidly emerging technology, and in the process: * Introduces all wireless components, both off-the-shelf and subscriber products * Covers WiFi technologies as 802.11a and b * Includes all scales of wireless networks, from home to office, cafes and campuses, airports and hotels, to MANs, and describes what's best for different needs * Shows how to integrate wired and wireless LANs * Discusses the benefits and pitfalls of wireless technologies * Advises how to set up and maintain security features * And much, much more! Basic enough for the hobbyist -; and yet still detailed enough for the IT professional -; Installing, Troubleshooting, and Repairing Wireless Networks is the essential survival guide for keeping a wireless network up and running.
http://rapidshare.com/files/52463264/0071410708.zip

这篇关于Installing, Troubleshooting, and Repairing Wireless Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916357

相关文章

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

Complex Networks Package for MatLab

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html 翻译: 复杂网络的MATLAB工具包提供了一个高效、可扩展的框架,用于在MATLAB上的网络研究。 可以帮助描述经验网络的成千上万的节点,生成人工网络,运行鲁棒性实验,测试网络在不同的攻击下的可靠性,模拟任意复杂的传染病的传

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

【机器学习】生成对抗网络(Generative Adversarial Networks, GANs)详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 生成对抗网络(Generative Adversarial Networks, GANs)详解GANs的基本原理GANs的训练过程GANs的发展历程GANs在实际任务中的应用小结 生成对

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples 创新点 1.旋转解决误分类 总结 可以说简单粗暴有效

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

Installing (安装) Octave For Mac

下载地址[Click Here] 下载后解压,打开解压后的文件夹: step1:将用于uninstall的一个app(文件以.app结尾)拖入Application(应用) step2:继续解压这个文件夹里的一个压缩文件,点击后自动弹出安装向导(load 向导内容慢,等待约1分多钟),按照指示一直点”continue”(或下一步),向导窗户关闭后没什么提示(说明安装完了) step3:此时可以

NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】

NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】

GNN-频域-2014:Spectral Networks and Locally Connected Networks on Graphs(频谱图卷积神经网络)【第一篇从频域角度分析】

《原始论文:Spectral Networks and Locally Connected Networks on Graphs》 空域卷积非常直观地借鉴了图像里的卷积操作,但缺乏一定的理论基础。 而频域卷积则不同,相比于空域卷积而言,它主要利用的是**图傅里叶变换(Graph Fourier Transform)**实现卷积。 简单来讲,它利用图的**拉普拉斯矩阵(Laplacian ma

YOLO前篇---Real-Time Grasp Detection Using Convolutional Neural Networks

论文地址:https://arxiv.org/abs/1412.3128 1. 摘要 比目前最好的方法提高了14%的精度,在GPU上能达到13FPS 2. 基于神经网络的抓取检测 A 结构 使用AlexNet网络架构,5个卷积层+3个全连接层,卷积层有正则化和最大池化层网络结构示意图如下 B 直接回归抓取 最后一个全连接层输出6个神经元,前4个与位置和高度相关,另外2个用来表示方向