Converged Multimedia Networks

2024-04-19 00:32

本文主要是介绍Converged Multimedia Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出版、作者信息和本声明。否则将追究法律责任。 http://blog.csdn.net/topmvp - topmvp
Learn how to construct the converged networks of the future!

New technologies are re-writing the business cases and cost models upon which telephony has been based for years. The fast "always on" Broadband Internet is a key driver, pushing forward and enabling the delivery of multimedia applications in all types of networks.

Service Providers want to reduce costs by converging new IP Services, existing data services and traditional telephony services onto the same core network, placing expectations on network performance. Converged Multimedia Networks focuses on enabling the synergistic combination of voice, data and video on to one network and the new challenges this will present in telecommunications.

Converged Multimedia Networks:
*Demonstrates how to deploy converged networks to support mobile telephony, fixed telephony, data, and broadband multimedia services.
*Describes how call control enables peer-to-peer voice and multimedia communication.
*Overviews the security solutions available to the network operators.
*Covers the architectural and protocol developments needed to permit the NGN to interoperate with the PSTN, reviewing transmission, and signalling in depth.
*Introduces the IMS architecture, for all types of access.
*Illustrates how value Added Services are delivered and describes how the Session Initiation Protocol (SIP) has launched a new breed of native SIP applications.
*Explains Multi Protocol Label Switching (MPLS), showing its capabilities in the core and describes how IP traffic engineering can support end user QoS guarantees.
*Discusses how differentiated QoS can be implemented allowing multiple service offerings, avoiding over-provisioning, and maximising the operator's return on investment.

This text will be an invaluable resource for network planners, and network architects in the telecommunications industry. Advanced students and network engineers working for telecommunication operators and vendors will also find this to be an excellent technical guide to the topic


http://rapidshare.com/files/3241042/N0470025530.rar

这篇关于Converged Multimedia Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916199

相关文章

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络

配置InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 网络 服务器端配置 在服务器端,你需要确保安装了必要的驱动程序和软件包,并且正确配置了网络接口。 安装 OFED 首先,安装 Open Fabrics Enterprise Distribution (OFED),它包含了 InfiniBand 所需的驱动程序和库。 sudo

InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE)

在超算网络环境中,InfiniBand (IB) 和 RDMA over Converged Ethernet (RoCE) 是两种重要的网络技术,它们旨在提供高性能、低延迟的数据传输能力,适用于大规模并行计算任务。下面是对这两个技术的具体名词解释和应用场景的详细说明。 InfiniBand (IB) 名词解释 InfiniBand (IB):InfiniBand 是一种高性能计算和企业数据

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

Complex Networks Package for MatLab

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html 翻译: 复杂网络的MATLAB工具包提供了一个高效、可扩展的框架,用于在MATLAB上的网络研究。 可以帮助描述经验网络的成千上万的节点,生成人工网络,运行鲁棒性实验,测试网络在不同的攻击下的可靠性,模拟任意复杂的传染病的传

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

【机器学习】生成对抗网络(Generative Adversarial Networks, GANs)详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 生成对抗网络(Generative Adversarial Networks, GANs)详解GANs的基本原理GANs的训练过程GANs的发展历程GANs在实际任务中的应用小结 生成对

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples 创新点 1.旋转解决误分类 总结 可以说简单粗暴有效

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】

NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】

GNN-频域-2014:Spectral Networks and Locally Connected Networks on Graphs(频谱图卷积神经网络)【第一篇从频域角度分析】

《原始论文:Spectral Networks and Locally Connected Networks on Graphs》 空域卷积非常直观地借鉴了图像里的卷积操作,但缺乏一定的理论基础。 而频域卷积则不同,相比于空域卷积而言,它主要利用的是**图傅里叶变换(Graph Fourier Transform)**实现卷积。 简单来讲,它利用图的**拉普拉斯矩阵(Laplacian ma