Python根据公募基金在一定时期内持有的股票数据进行社会网络分析

本文主要是介绍Python根据公募基金在一定时期内持有的股票数据进行社会网络分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【背景】根据提供的公募基金在一定时期内持有的股票数据,构建一个社会网络分析框架,度量每个基金在每年的度中心度、介数中心度和特征向量中心度,并对相关数据做出简要说明。

【代码】

import networkx as nx
import pandas as pd
import numpy as np
# 读取数据
df = pd.read_excel("基金持股修正.xlsx")
df.head()
基金代码年份唯一股票代码
012019南极电商
112019中国平安
212019洲明科技
312019保利地产
412019东山精密
# 构建网络
G = nx.Graph()
df["年份"] = df["年份"].astype(int)# 2. 根据基金代码和年份分组并创建图
fund_graphs = {}
for fund_code, fund_df in df.groupby(["基金代码", "年份"]):graph = nx.Graph()graph.add_nodes_from(fund_df["唯一股票代码"])fund_graphs[(fund_code, int(fund_df["年份"].iloc[0]))] = graph# 3. 计算中心度指标
fund_scores = []
for fund_code, fund_graph in fund_graphs.items():degree_centrality = nx.degree_centrality(fund_graph)closeness_centrality = nx.closeness_centrality(fund_graph)eigenvector_centrality = nx.eigenvector_centrality(fund_graph)for stock, score in degree_centrality.items():fund_scores.append({"基金代码": fund_code[0],"年份": fund_code[1],"股票代码": stock,"中心度指标": "度中心度","分数": score})for stock, score in closeness_centrality.items():fund_scores.append({"基金代码": fund_code[0],"年份": fund_code[1],"股票代码": stock,"中心度指标": "介数中心度","分数": score})for stock, score in eigenvector_centrality.items():fund_scores.append({"基金代码": fund_code[0],"年份": fund_code[1],"股票代码": stock,"中心度指标": "特征向量中心度","分数": score})fund_score_df = pd.DataFrame(fund_scores)# 4. 输出表格
fund_score_df.to_excel("fund_stock_centrality.xlsx", index=False)

  • - 度中心度:度中心度衡量一个节点的邻接节点数量。在一个基金持股网络中,度中心度较高的股票表示它与其他股票有更多的连接,表明它在该基金的投资组合中具有更高的重要性。
  • - 介数中心度:介数中心度衡量一个节点在网络中的整体重要性。它考虑了节点在最短路径中的频率。在一个基金持股网络中,介数中心度较高的股票表示它在基金持股网络中连接不同股票的桥梁作用更强。
  • - 特征向量中心度:特征向量中心度考虑了节点的邻接节点的重要性和连接性。在一个基金持股网络中,特征向量中心度较高的股票表示它与其他重要股票的连接更多,表明它在该基金的投资组合中具有更高的影响力。

Python根据公募基金在一定时期内持有的股票数据进行社会网络分析

这篇关于Python根据公募基金在一定时期内持有的股票数据进行社会网络分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/915420

相关文章

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.