sklearn【AUC-ROC】原理,以及绘制ROC曲线!

2024-04-18 13:20

本文主要是介绍sklearn【AUC-ROC】原理,以及绘制ROC曲线!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、AUC-ROC 介绍

在分类任务中,特别是当数据集中的类别分布不平衡时,评估模型的性能变得尤为重要。AUC-ROC(Area Under the Receiver Operating Characteristic Curve,受试者工作特征曲线下的面积)是一种有效的评估指标,能够全面反映模型在不同分类阈值下的性能,并特别适用于不平衡类别的场景。本文将介绍如何使用sklearn库来计算AUC-ROC,并解释其背后的计算原理。

首先,我们需要理解AUC-ROC的计算方式和其背后的含义。AUC-ROC是通过绘制ROC曲线并计算其下的面积来得到的。

ROC曲线是真正例率(True Positive Rate,TPR)和假正例率(False Positive Rate,FPR)在不同分类阈值下的关系曲线。TPR是真正例占所有正例的比例,FPR是假正例占所有反例的比例。

AUC-ROC的值越接近1,表示模型的性能越好,能够更好地区分正例和反例。

在sklearn库中,我们可以使用roc_auc_score函数来计算AUC-ROC。下面我们将通过一个简单的例子来演示如何使用这个函数。

二、案例学习

首先,我们需要准备数据集和分类模型。在这个例子中,我们将使用sklearn自带的乳腺癌数据集(Breast Cancer Wisconsin dataset),并使用逻辑回归作为分类器。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt# 加载乳腺癌数据集
cancer = datasets.load_breast_cancer()
X = cancer.data
y = cancer.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建逻辑回归模型
model = LogisticRegression(solver='liblinear')# 使用训练数据进行训练
model.fit(X_train, y_train)

接下来,我们将使用模型对测试集进行预测,并计算预测为正例的概率。这些概率将用于绘制ROC曲线。

# 对测试集进行预测概率的估计
y_pred_prob = model.predict_proba(X_test)[:, 1]

然后,我们可以使用roc_curve函数来计算真正例率和假正例率,并使用这些值来绘制ROC曲线。

# 计算真正例率(TPR)和假正例率(FPR)
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)# 计算AUC-ROC的值
roc_auc = auc(fpr, tpr)# 绘制ROC曲线
plt.figure()
lw = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic Example')
plt.legend(loc="lower right")
plt.show()

运行结果:
AUC-ROC曲线.png

在上面的代码中,我们首先使用roc_curve函数计算了真正例率和假正例率,并使用auc函数计算了AUC-ROC的值。然后,我们使用matplotlib库来绘制ROC曲线。曲线越接近左上角,表示模型的性能越好。对角线表示一个无用的模型,即随机猜测。

通过绘制ROC曲线,我们可以直观地看到模型在不同分类阈值下的性能表现。曲线的形状和AUC-ROC的值可以帮助我们评估模型在区分正例和反例时的能力。如果曲线越接近左上角,并且AUC-ROC的值越接近1,那么模型的性能就越好。

此外,我们还可以将ROC曲线与其他评估指标(如准确率、精确度、召回率等)进行比较,以更全面地了解模型的性能。ROC曲线的一个优点是它不受特定分类阈值的影响,因此可以提供更稳健的性能评估。

三、总结

在实际应用中,我们可以根据具体的问题和数据集选择合适的分类模型和评估指标,并使用Python和sklearn库来绘制ROC曲线,以便更好地了解模型的性能并进行优化。通过不断迭代和改进模型,我们可以提高模型的分类性能,并更好地应对不平衡类别等挑战。

这篇关于sklearn【AUC-ROC】原理,以及绘制ROC曲线!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914902

相关文章

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操