算法练习第19天|222.完全二叉树的节点个数

2024-04-18 10:28

本文主要是介绍算法练习第19天|222.完全二叉树的节点个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

222.完全二叉树的节点个数

222. 完全二叉树的节点个数 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/count-complete-tree-nodes/description/

题目描述:

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。题目数据保证输入的树是 完全二叉树

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

题目分析:

按照前文所讲的二叉树的递归遍历以及层序遍历,可以将完全二叉树看作普通二叉树处理,进行节点个数的统计。思路较为简单,代码如下:

后序递归遍历解法:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public://后序递归,第一步,确定函数参数以及返回值int countNodes(TreeNode* root) {      //递归第二步,确定递归终止条件。当递归函数指针root为空,递归终止if(root == nullptr) return 0;//递归第三步,确定单层递归逻辑:统计左右子树的节点个数,然后相加再加1int left = countNodes(root->left);  //左int right = countNodes(root->right);  //右int result = 1 + left + right;   //1就是后序遍历顺序的中           return result;}
};

层序遍历解法(也叫迭代法):

class Solution {
public://层序遍历int countNodes(TreeNode* root) {      if(root == nullptr) return 0;queue<TreeNode*> que;que.push(root);int result = 0;while(!que.empty()) {int size = que.size();for(int i = 0; i < size; i++){TreeNode * node = que.front();que.pop();result++;if(node->left)  que.push(node->left);if(node->right)  que.push(node->right);}}return result;}
};

 完全二叉树解法:

但是上述方法都是将完全二叉树当做普通二叉树来进行题目的求解,这样就忽略了完全二叉树的性质。完全二叉树时除了最底层的节点可能不满之外,其余层均是满的,并且,最底层的节点必须是严格从左往右依次排列的,不能有跳跃(如下面的最右侧的二叉树,蓝色框内存在跳跃,所以其不是完全二叉树)。

如果完全二叉树最底层也填满了的话,这时它就也是满二叉树。节点个数为2^{n} -1 ,n为二叉树的层数。

所以完全二叉树只有两种情况,情况一:就是满二叉树,情况二:最后一层叶子节点没有满。

对于情况一,可以直接用2^{n} -1来计算。

对于情况二,分别递归左孩子,和右孩子,递归到某一深度一定会有左孩子或者右孩子为满二叉树,然后依然可以按照情况1来计算。

关键点来了,怎么判断左右孩子是不是满二叉树?在完全二叉树中,如果递归一直向左遍历的深度等于递归一直向右遍历的深度,那说明就是满二叉树。前提是一定要在完全二叉树中。

所以,该解法的递归终止条件如下所示:

if (root == nullptr) return 0; 
// 开始根据左深度和右深度是否相同来判断该子树是不是满二叉树
TreeNode* left = root->left;
TreeNode* right = root->right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left) {  // 求左子树深度left = left->left;leftDepth++;
}
while (right) { // 求右子树深度right = right->right;rightDepth++;
}
if (leftDepth == rightDepth) {return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,返回满足满二叉树的子树节点数量
}

递归三部曲,第三部,单层递归的逻辑:(可以看出使用后序遍历)

int leftTreeNum = countNodes(root->left);       // 左
int rightTreeNum = countNodes(root->right);     // 右
int result = leftTreeNum + rightTreeNum + 1;    // 中
return result;

 整体代码如下:

class Solution {
public://递归第一步int countNodes(TreeNode* root) { //递归第二步,确定递归终止条件     if(root == nullptr) return 0;TreeNode *left = root->left;TreeNode *right = root->right;int leftDepth=0 , rightDepth = 0;while(left)  //一直向左遍历,求深度{leftDepth++;left = left->left;}while(right) //一直向右遍历,求深度{rightDepth++;right = right->right;}if(leftDepth == rightDepth)  //当前的完全二叉树为满二叉树return (2 << leftDepth) - 1;  //2的n次方减一//递归第三步,确认单层递归逻辑//不然的话,就递归统计左右子树的节点数。每一级递归都会进行上面的满二叉树判断int left = countNodes(root->left);  //左int right = countNodes(root->right);  //右int result = left + right + 1;  //中return result;}
};

该解法与后续递归解法的不同之处就在于递归终止条件,该解法核心思想致力于逐子树判断是否为满二叉树。如果是,使用2^{n} -1计算节点数;如果不是,则进行下一层的递归countNodes。思路很巧妙。

这篇关于算法练习第19天|222.完全二叉树的节点个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914517

相关文章

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1