【配电网故障定位】基于二进制混合灰狼粒子群算法的配电网故障定位 33节点配电系统故障定位【Matlab代码#79】

本文主要是介绍【配电网故障定位】基于二进制混合灰狼粒子群算法的配电网故障定位 33节点配电系统故障定位【Matlab代码#79】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 【`获取资源`请见文章第6节:资源获取】
    • 1. 配电网故障定位
    • 2. 二进制混合灰狼粒子群算法
    • 3. 算例展示
    • 4. 部分代码展示
    • 5. 仿真结果展示
    • 6. 资源获取


获取资源请见文章第6节:资源获取】


1. 配电网故障定位

配电系统故障定位,即在配电网络发生故障的时候,利用智能化的设备和系统,对故障点做出快
速、精准的位置锁定。我国早期使用的故障定位技术是利用分段器和重合器完成的,简单且容易实
现。现阶段,考虑到经济性因素,大多使用基于FTU和人工智能算法的定位技术。对配电网系统故障间接定位的方法主要有神经网络算法和人工智能算法。本文运用智能算法对配电系统的故障进行定位,其原理是把拟定的故障位置作为变量,用智能算法对构造的目标函数进行优化计算,最后得出的解即定位的故障位置。

本文采用的是33节点配电系统模型:
在这里插入图片描述

2. 二进制混合灰狼粒子群算法

二进制混合灰狼粒子群算法(Binary Mixed Grey Wolf Particle Swarm Optimization,简称BMGWPSO)是一种结合了灰狼优化算法(Grey Wolf Optimization,GWO)和粒子群优化算法(Particle Swarm Optimization,PSO)的进化算法。这个算法的目标是利用两种算法的优点,以更高效地解决优化问题。
灰狼优化算法(GWO):

  1. GWO是一种模拟灰狼群体行为的优化算法,包括了模拟灰狼猎物寻找过程的步骤。
    算法的核心思想是模拟灰狼群体的社会结构和行为,包括“领袖”、“副领导”和“普通成员”等角色。
    灰狼通过个体的位置和适应度值来调整自己的位置,从而逐步靠近最优解。
    粒子群优化算法(PSO):

  2. PSO是一种基于群体智能的优化算法,模拟了鸟群或鱼群等生物群体的集体行为。
    算法中的每个“粒子”代表了搜索空间中的一个潜在解,它们通过不断地调整自身位置和速度来搜索最优解。粒子通过比较自身位置和邻居位置的适应度值来更新自己的速度和位置。

在BGWOPSO中,将这两种算法结合起来,采用不同的策略,同时利用GWO的社会结构和灰狼的寻找策略来进行优化搜索,又利用了粒子群的向最优解靠近的优点。这样的结合可以在解决复杂的优化问题时更快地收敛到全局最优解。

3. 算例展示

在这里插入图片描述
在这里插入图片描述

4. 部分代码展示

clc
clear
close allglobal y K
SearchAgents_no=1000; % 种群数量
Max_iteration=100; % 最大迭代次数
dim=33; % 维度(33节点配电网系统)
lb=0; % 表示非故障位置
ub=1; % 表示该位置故障% 多点故障
y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 0];
%% 计算
K=[1 1 1];[TargetFitness,TargetPosition,Convergence_curve]=BGWOPSO(SearchAgents_no, Max_iteration, dim); % 利用二进制混合灰狼粒子群算法进行优化求解fprintf('\n')
display(['最优值为 : ', num2str(TargetFitness)]);
display(['最优解为 : ', num2str(TargetPosition)]);
[row, col] = find(TargetPosition == 1);
display(['故障位置为 : ', num2str(col)]);figure
plot(Convergence_curve(2:end),'r')
ylabel('适应度值');
xlabel('迭代次数');
title('BGWOPSO优化曲线');

5. 仿真结果展示

在这里插入图片描述
在这里插入图片描述

6. 资源获取

可以获取完整代码资源。👇👇👇👀名片

这篇关于【配电网故障定位】基于二进制混合灰狼粒子群算法的配电网故障定位 33节点配电系统故障定位【Matlab代码#79】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914208

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时