工业数学模型——高炉煤气发生量预测(三)

2024-04-18 04:12

本文主要是介绍工业数学模型——高炉煤气发生量预测(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、工业场景

冶金过程中生产的各种煤气,例如高炉煤气、焦炉煤气、转炉煤气等。作为重要的副产品和二次能源,保证它们的梯级利用和减少放散是煤气能源平衡调控的一项紧迫任务,准确的预测煤气的发生量是实现煤气系统在线最优调控的前提。

2、数学模型

本次研究主要采用了长短记忆模型(LSTM)预测了正常工况下的高炉煤气发生量。后续研究方向希望将正常工况扩展到变化工况条件下,例如休风、减产、停产、检修等条件下煤气发生量,并引入更多特征维度,例如:焦比、煤比、风量、富氧、风温、风压、炉内压差等。下面重点介绍一下LSTM网络结构。

长短期记忆网络(LSTM,Long Short-Term Memory)是一种时间循环神经网络,是为了解决一般的RNN(循环神经网络)存在的长期依赖问题而专门设计出来的,所有的RNN都具有一种重复神经网络模块的链式形式。
在这里插入图片描述这张图片是经典的LSTM网络结构的图片,但是不好理解,图片把多维的空间结构压缩成了二维图片,所以需要大家脑补一下,回放到立体空间中去理解。相对比RNN 通过时间步骤地更新隐藏状态和输出结果。而LSTM 通过输入门、遗忘门和输出门来控制隐藏状态的更新和输出。在这里不过多的去讲解模型结构,大家可以从网上了解一下,LSTM网络模型作为世纪霸主被广泛应用于自然语言处理、语音识别、图像处理等领域。总之很厉害!

3、数据准备

本次数据收集了1#高炉从4月12日0点到4月16日0点72小时的煤气累计发生量数据,时间间隔为60000ms也就是1分钟一次点位数据,通过计算获取5760个分钟级的煤气发生量数据。
如图:第一个字段是数采时序库中的点位标识,第二个字段是时间,第三个字段是当前煤气发生量累计值,第四个字段是计算获得的当前分钟内煤气发生量。

在这里插入图片描述

4、模型构建

class LSTM(nn.Module):"""LSMT网络搭建"""def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):super().__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.num_layers = num_layersself.output_size = output_sizeself.num_directions = 1  # 单向LSTMself.batch_size = batch_sizeself.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)self.linear = nn.Linear(self.hidden_size, self.output_size)def forward(self, input_seq):batch_size, seq_len = input_seq.shape[0], input_seq.shape[1]h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)output, _ = self.lstm(input_seq, (h_0, c_0))pred = self.linear(output)pred = pred[:, -1, :]return pred

5、模型训练

①数据预处理:加载数据文件,原始数据文件为csv(通过1#高炉84小时内煤气发生量累计值,时间间隔为60000ms,计算出84小时内每分钟的发生量)将数据分为训练集:验证集:测试集=3:1:1。

def load_data(file_name):"""加载数据文件,原始数据文件为csv(通过1#高炉24小时内煤气发生量累计值,时间间隔为60000ms,计算出24小时内每分钟的发生量):param file_name csv文件的绝对路径:return 训练集、验证集、测试集、训练集中最大值、训练集中最小值训练集:验证集:测试集=3:1:1"""dataset = pd.read_csv('D:\\LIHAOWORK\\' + file_name, encoding='gbk')train = dataset[:int(len(dataset) * 0.6)]val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)]test = dataset[int(len(dataset) * 0.8):len(dataset)]max, nin = np.max(train[train.columns[3]]), np.min(train[train.columns[3]])  # 分钟内发生量是csv中第四个字段return train, val, test, max, nin

②数据组装:把数据组装成训练、验证、测试需要的格式。实质是90个顺序数据为一组作为输入值x,第91个作为真实发生值y,如此循环。

def process_data(data, batch_size, shuffle, m, n, k):"""数据处理:param data 待处理数据:param batch_size 批量大小:param shuffle 是否打乱:param m 最大值:param n 最小值:param k 序列长度:return 处理好的数据"""data_3 = data.iloc[0:, [3]].to_numpy().reshape(-1)  #data_3 = data_3.tolist()data = data.values.tolist()data_3 = (data_3 - n) / (m - n)feature = []label = []for i in range(len(data) - k):train_seq = []train_label = []for j in range(i, i + k):x = [data_3[j]]train_seq.append(x)train_label.append(data_3[i + k])feature.append(train_seq)label.append(train_label)feature_tensor = torch.FloatTensor(feature)label_tensor = torch.FloatTensor(label)data = TensorDataset(feature_tensor, label_tensor)data_loader = DataLoader(dataset=data, batch_size=batch_size, shuffle=shuffle, num_workers=0, drop_last=True)return data_loader

③模型训练:输入大小为1;隐藏层大小为128,隐藏层数为1,输出大小为1,批量大小为5,学习率为0.01,训练次数3。

def train(Dtr, Val, path):"""训练:param Dtr 训练集:param Val 验证集:param path 模型保持路劲"""input_size = 1hidden_size = 128num_layers = 1output_size = 1epochs = 5model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=5)loss_function = nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-4)# optimizer = torch.optim.SGD(model.parameters(), lr=0.05, momentum=0.9, weight_decay=1e-4)scheduler = StepLR(optimizer, step_size=30, gamma=0.1)# start trainingfor epoch in tqdm(range(epochs)):train_loss = []for (seq, label) in Dtr:y_pred = model(seq)loss = loss_function(y_pred, label)train_loss.append(loss.item())optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()# validationmodel.eval()val_loss = []for seq, label in Val:y_pred = model(seq)loss = loss_function(y_pred, label)val_loss.append(loss.item())print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), np.mean(val_loss)))model.train()state = {'models': model.state_dict()}torch.save(state, path)

训练过程如下:
在这里插入图片描述

④模型测试:

def test(Dte, path, m, n):"""测试:param Dte 测试集:param path 模型:param m 最大值:param n 最小值"""pred = []y = []input_size = 1hidden_size = 128num_layers = 1output_size = 1model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=5)model.load_state_dict(torch.load(path)['models'])model.eval()for (seq, target) in tqdm(Dte):y.extend(target)with torch.no_grad():y_pred = model(seq)pred.extend(y_pred)y, pred = np.array(y), np.array(pred)y = (m - n) * y + npred = (m - n) * pred + n# 出图x = [i for i in range(len(y))]x_smooth = np.linspace(np.min(x), np.max(x), 1000)y_smooth = make_interp_spline(x, y)(x_smooth)plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=1, label='true')y_smooth = make_interp_spline(x, pred)(x_smooth)plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=1, label='pred')plt.grid(axis='y')plt.legend()plt.show()

直接对比图:红色线为模型在测试数据集上的预测值,绿色线为真实的发生值。
在这里插入图片描述有点密密麻麻,我们可以看一下局部
在这里插入图片描述在这里插入图片描述⑤滚动测试30分钟内发生值,利用前90分钟的真实发生值预测第91分钟的发生值,再将第91分钟的发生值加入到输入中,预测第92分钟的发生值,以此类推,预测30分钟内的高炉煤气发生量。

def test_rolling(Dte, path, m, n):"""滚动测试,预测30条:param Dte 测试集:param path 模型:param m 最大值:param n 最小值"""pred = []y = []input_size = 1hidden_size = 128num_layers = 1output_size = 1model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=1)model.load_state_dict(torch.load(path)['models'])model.eval()i = 0  # 控制滚动预测的长度,这里计划通过前90分钟内的发生量预测后30分钟内的发生量for (seq, target) in tqdm(Dte):y.extend(target)with torch.no_grad():seq = seq.numpy().tolist()[0]seq.extend(pred)  # 预测值追加到后面seq = seq[-90:]   # 截取后90条数据,滚动预测seq = torch.tensor(seq).resize(1, 90, 1)y_pred = model(seq)pred.extend(y_pred)i = i + 1if i >= 30:  # 控制滚动预测的长度,这里计划通过前90分钟内的发生量预测后30分钟内的发生量breaky, pred = np.array(y), np.array(pred)y = (m - n) * y + npred = (m - n) * pred + n# 出图x = [i for i in range(len(y))]x_smooth = np.linspace(np.min(x), np.max(x), 1000)y_smooth = make_interp_spline(x, y)(x_smooth)plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=1, label='true')y_smooth = make_interp_spline(x, pred)(x_smooth)plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=1, label='pred')plt.grid(axis='y')plt.legend()plt.show()

出图
在这里插入图片描述有点过分拟合
调整参数num_layers = 2 增加dropout=0.3 后
在这里插入图片描述整体效果不是很理想,可能再调一下参会好一些。
目前的完整代码如下:

import pandas as pd
import numpy as np
import torch
from matplotlib import pyplot as plt
from scipy.interpolate import make_interp_spline
from torch import nn
from torch.optim.lr_scheduler import StepLR
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdmdef load_data(file_name):"""加载数据文件,原始数据文件为csv(通过1#高炉24小时内煤气发生量累计值,时间间隔为60000ms,计算出24小时内每分钟的发生量):param file_name csv文件的绝对路径:return 训练集、验证集、测试集、训练集中最大值、训练集中最小值训练集:验证集:测试集=3:1:1"""dataset = pd.read_csv('D:\\LIHAOWORK\\' + file_name, encoding='gbk')train = dataset[:int(len(dataset) * 0.6)]val = dataset[int(len(dataset) * 0.6):int(len(dataset) * 0.8)]test = dataset[int(len(dataset) * 0.8):len(dataset)]max, nin = np.max(train[train.columns[3]]), np.min(train[train.columns[3]])  # 分钟内发生量是csv中第四个字段return train, val, test, max, nindef process_data(data, batch_size, shuffle, m, n, k):"""数据处理:param data 待处理数据:param batch_size 批量大小:param shuffle 是否打乱:param m 最大值:param n 最小值:param k 序列长度:return 处理好的数据"""data_3 = data.iloc[0:, [3]].to_numpy().reshape(-1)  #data_3 = data_3.tolist()data = data.values.tolist()data_3 = (data_3 - n) / (m - n)feature = []label = []for i in range(len(data) - k):train_seq = []train_label = []for j in range(i, i + k):x = [data_3[j]]train_seq.append(x)train_label.append(data_3[i + k])feature.append(train_seq)label.append(train_label)feature_tensor = torch.FloatTensor(feature)label_tensor = torch.FloatTensor(label)data = TensorDataset(feature_tensor, label_tensor)data_loader = DataLoader(dataset=data, batch_size=batch_size, shuffle=shuffle, num_workers=0, drop_last=True)return data_loaderclass LSTM(nn.Module):"""LSMT网络搭建"""def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):super().__init__()self.input_size = input_sizeself.hidden_size = hidden_sizeself.num_layers = num_layersself.output_size = output_sizeself.num_directions = 1  # 单向LSTMself.batch_size = batch_sizeself.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, dropout=0.3, batch_first=True)self.linear = nn.Linear(self.hidden_size, self.output_size)def forward(self, input_seq):batch_size, seq_len = input_seq.shape[0], input_seq.shape[1]h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size)output, _ = self.lstm(input_seq, (h_0, c_0))pred = self.linear(output)pred = pred[:, -1, :]return preddef train(Dtr, Val, path):"""训练:param Dtr 训练集:param Val 验证集:param path 模型保持路劲"""input_size = 1hidden_size = 128num_layers = 2output_size = 1epochs = 3model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=5)loss_function = nn.MSELoss()optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=1e-4)# optimizer = torch.optim.SGD(model.parameters(), lr=0.05, momentum=0.9, weight_decay=1e-4)scheduler = StepLR(optimizer, step_size=30, gamma=0.1)# start trainingfor epoch in tqdm(range(epochs)):train_loss = []for (seq, label) in Dtr:y_pred = model(seq)loss = loss_function(y_pred, label)train_loss.append(loss.item())optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()# validationmodel.eval()val_loss = []for seq, label in Val:y_pred = model(seq)loss = loss_function(y_pred, label)val_loss.append(loss.item())print('epoch {:03d} train_loss {:.8f} val_loss {:.8f}'.format(epoch, np.mean(train_loss), np.mean(val_loss)))model.train()state = {'models': model.state_dict()}torch.save(state, path)def test(Dte, path, m, n):"""测试:param Dte 测试集:param path 模型:param m 最大值:param n 最小值"""pred = []y = []input_size = 1hidden_size = 128num_layers = 2output_size = 1model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=5)model.load_state_dict(torch.load(path)['models'])model.eval()for (seq, target) in tqdm(Dte):y.extend(target)with torch.no_grad():y_pred = model(seq)pred.extend(y_pred)y, pred = np.array(y), np.array(pred)y = (m - n) * y + npred = (m - n) * pred + n# 出图x = [i for i in range(len(y))]x_smooth = np.linspace(np.min(x), np.max(x), 1000)y_smooth = make_interp_spline(x, y)(x_smooth)plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=1, label='true')y_smooth = make_interp_spline(x, pred)(x_smooth)plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=1, label='pred')plt.grid(axis='y')plt.legend()plt.show()def test_rolling(Dte, path, m, n):"""滚动测试,预测30条:param Dte 测试集:param path 模型:param m 最大值:param n 最小值"""pred = []y = []input_size = 1hidden_size = 128num_layers = 2output_size = 1model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=1)model.load_state_dict(torch.load(path)['models'])model.eval()i = 0  # 控制滚动预测的长度,这里计划通过前90分钟内的发生量预测后30分钟内的发生量for (seq, target) in tqdm(Dte):y.extend(target)with torch.no_grad():seq = seq.numpy().tolist()[0]seq.extend(pred)  # 预测值追加到后面seq = seq[-90:]   # 截取后90条数据,滚动预测seq = torch.tensor(seq).resize(1, 90, 1)y_pred = model(seq)pred.extend(y_pred)i = i + 1if i >= 30:  # 控制滚动预测的长度,这里计划通过前90分钟内的发生量预测后30分钟内的发生量breaky, pred = np.array(y), np.array(pred)y = (m - n) * y + npred = (m - n) * pred + n# 出图x = [i for i in range(len(y))]x_smooth = np.linspace(np.min(x), np.max(x), 1000)y_smooth = make_interp_spline(x, y)(x_smooth)plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=1, label='true')y_smooth = make_interp_spline(x, pred)(x_smooth)plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=1, label='pred')plt.grid(axis='y')plt.legend()plt.show()if __name__ == '__main__':Dtr, Val, Dte, m, n = load_data("4.csv")Dtr = process_data(Dtr, 5, False, m, n, 90)Val = process_data(Val, 5, False, m, n, 90)#Dte = process_data(Dte, 5, False, m, n, 90)Dte = process_data(Dte, 1, False, m, n, 90)train(Dtr, Val, "D:\\LIHAOWORK\\model.pth")#test(Dte, "D:\\LIHAOWORK\\model.pth", m, n)test_rolling(Dte, "D:\\LIHAOWORK\\model.pth", m, n)

这篇关于工业数学模型——高炉煤气发生量预测(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913730

相关文章

Tensorflow lstm实现的小说撰写预测

最近,在研究深度学习方面的知识,结合Tensorflow,完成了基于lstm的小说预测程序demo。 lstm是改进的RNN,具有长期记忆功能,相对于RNN,增加了多个门来控制输入与输出。原理方面的知识网上很多,在此,我只是将我短暂学习的tensorflow写一个预测小说的demo,如果有错误,还望大家指出。 1、将小说进行分词,去除空格,建立词汇表与id的字典,生成初始输入模型的x与y d

临床基础两手抓!这个12+神经网络模型太贪了,免疫治疗预测、通路重要性、基因重要性、通路交互作用性全部拿下!

生信碱移 IRnet介绍 用于预测病人免疫治疗反应类型的生物过程嵌入神经网络,提供通路、通路交互、基因重要性的多重可解释性评估。 临床实践中常常遇到许多复杂的问题,常见的两种是: 二分类或多分类:预测患者对治疗有无耐受(二分类)、判断患者的疾病分级(多分类); 连续数值的预测:预测癌症病人的风险、预测患者的白细胞数值水平; 尽管传统的机器学习提供了高效的建模预测与初步的特征重

结合Python与GUI实现比赛预测与游戏数据分析

在现代软件开发中,用户界面设计和数据处理紧密结合,以提升用户体验和功能性。本篇博客将基于Python代码和相关数据分析进行讨论,尤其是如何通过PyQt5等图形界面库实现交互式功能。同时,我们将探讨如何通过嵌入式预测模型为用户提供赛果预测服务。 本文的主要内容包括: 基于PyQt5的图形用户界面设计。结合数据进行比赛预测。文件处理和数据分析流程。 1. PyQt5 图形用户界面设计

CNN-LSTM模型中应用贝叶斯推断进行时间序列预测

这篇论文的标题是《在混合CNN-LSTM模型中应用贝叶斯推断进行时间序列预测》,作者是Thi-Lich Nghiem, Viet-Duc Le, Thi-Lan Le, Pierre Maréchal, Daniel Delahaye, Andrija Vidosavljevic。论文发表在2022年10月于越南富国岛举行的国际多媒体分析与模式识别会议(MAPR)上。 摘要部分提到,卷积

变压器制造5G智能工厂工业物联数字孪生平台,推进制造业数字化转型

变压器制造5G智能工厂工业物联数字孪生平台,推进制造业数字化转型。作为传统制造业的重要组成部分,变压器制造行业也不例外地踏上了数字化转型的快车道。而变压器制造5G智能工厂物联数字孪生平台的出现,更是为这一进程注入了强大的动力,不仅极大地提升了生产效率,还推动了整个行业的智能化、精细化发展。 5G智能工厂,是基于5G通信技术和物联网(IoT)的深度融合而构建的智能制造体系。它利用5G网络的高速度、

发动机制造5G智能工厂工业物联数字孪生平台,推进制造业数字化转型

发动机制造作为高端制造业的核心领域之一,正积极探索并引领这一变革。其中,发动机制造5G智能工厂物联数字孪生平台的兴起,不仅为发动机制造业注入了新的活力,也为整个制造业的数字化转型树立了新的标杆。发动机制造5G智能工厂物联数字孪生平台,是基于5G通信技术、物联网(IoT)、大数据、人工智能(AI)及数字孪生技术等多领域深度融合的产物。 工业物联网技术将发动机制造工厂内的各类设备、传感器等物体互联互

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测

多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测 目录 多维时序 | Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab基于SSA-SVR麻雀算法优化支持向量机的数据多变量时间序列预测(完整源码和数据) 2.SS

力扣 | 递归 | 区间上的动态规划 | 486. 预测赢家

文章目录 一、递归二、区间动态规划 LeetCode:486. 预测赢家 一、递归 注意到本题数据范围为 1 < = n < = 20 1<=n<=20 1<=n<=20,因此可以使用递归枚举选择方式,时间复杂度为 2 20 = 1024 ∗ 1024 = 1048576 = 1.05 × 1 0 6 2^{20} = 1024*1024=1048576=1.05 × 10^

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出

回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出 目录 回归预测 | MATLAB实现PSO-LSTM(粒子群优化长短期记忆神经网络)多输入单输出预测效果基本介绍模型介绍PSO模型LSTM模型PSO-LSTM模型 程序设计参考资料致谢 预测效果 Matlab实现PSO-LSTM多变量回归预测 1.input和outpu

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention

时序预测|变分模态分解-双向时域卷积-双向门控单元-注意力机制多变量时间序列预测VMD-BiTCN-BiGRU-Attention 文章目录 一、基本原理1. 变分模态分解(VMD)2. 双向时域卷积(BiTCN)3. 双向门控单元(BiGRU)4. 注意力机制(Attention)总结流程 二、实验结果三、核心代码四、代码获取五、总结 时序预测|变分模态分解-双向时域卷积