【机器学习300问】74、如何理解深度学习中L2正则化技术?

2024-04-18 03:12

本文主要是介绍【机器学习300问】74、如何理解深度学习中L2正则化技术?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        深度学习过程中,若模型出现了过拟合问题体现为高方差。有两种解决方法:

  1. 增加训练样本的数量
  2. 采用正则化技术

        增加训练样本的数量是一种非常可靠的方法,但有时候你没办法获得足够多的训练数据或者获取数据的成本很高,这时候正则化技术就可以有效的帮助你避免模型过拟合。接下来本文就来讲解一下深度学习中的正则化起作用的原理(文中以L2正则化为例)。

        有关正则化的基础知识,可以回看我之前的文章哦:

【机器学习300问】18、正则化是如何解决过拟合问题的?icon-default.png?t=N7T8http://t.csdnimg.cn/vX2mP

一、包括L2正则化项的损失函数长什么样

        在损失函数(如均方误差、交叉熵误差等)的基础上,L2正则化引入了一个与权重向量W相关的正则化项,通常表示为:

J(W, b; x, y) = L(W, b; x, y) + \frac{\lambda}{2m} \sum_{l=1}^{L} ||W^{[l]}||^2_F

符号解释
J(W, b; x, y)包含正则化项的总损失函数
L(W, b; x, y)代表未加正则化项的原始损失函数,这通常是对每个样本的损失的平均值,如交叉熵损失或均方误差损失
W,b分别表示网络中的权重和偏置参数
\lambda正则化项的系数,这是一个超参数,用于控制正则化的强度
m训练样本的数量
\sum_{l=1}^{L} ||W^{[l]}||^2_FL2正则化项,通常称为权重衰减项。是所有权重矩阵的Frobenius范数的平方的和。Frobenius范数是一个矩阵范数,等同于矩阵元素的平方和的平方根
||W^{[l]}||^2_F
表示第l层权重矩阵的Frobenius范数的平方,而L是网络层的总数

二、L2正则化的作用机制

(1)权重缩小

        在优化过程中,由于L2正则化项的存在,当模型试图降低原始损失时,同时需要考虑减小权重的平方和。这会促使模型在训练过程中选择较小的权重值,避免权重值过大导致模型对训练数据的过度敏感。

(2)防止过拟合

        较小的权重值意味着模型对单个特征的影响不会过于突出,减少了模型对训练数据中噪声和个别样本特性的过度学习,有利于提高模型在未见过数据上的泛化能力。

三、L2正则化到底是怎么起作用的嘛!

(1)微观上,对激活函数的影响

        激活函数tanh(双曲正切函数)的输出范围在-1到1之间,形状类似于Sigmoid函数但更为平缓,且在两端饱和区的梯度更接近于0。公式就不赘述了之前的文章详细介绍过了,我们在这里只关注函数的图像,从图像上理解就可以了。

         用g(z)=tanh(z)表示,那么我们发现,只要z非常小,如果z只涉及少量参数,我们就只利用了双曲正切函数的线性状态,如下图所示:

        当L2正则化惩罚过大时,模型的权重被迫保持较小的值,也就是说z也会很小。对于tanh激活函数意味着:

  1. tanh函数接近线性(斜率为1),较小的权重导致输入信号大部分位于tanh函数的线性区域内,使得模型的非线性表达能力减弱,趋向于线性模型
  2. 过强的L2正则化可能会限制tanh激活函数充分发挥其非线性变换的能力,尤其是对于需要捕捉复杂非线性关系的任务,模型可能无法有效学习数据的深层次结构。

        在之前的文章中讲到过,如果激活函数都是线性函数,那么无论你的神经网络有多深,节点有很多,都相当于一个简单的线性模型。这就是为什么L2正则化通过约束权重的大小,间接降低了模型的复杂度。

(2)宏观上,对神经网络结构的影响

        现在我们假设一种很极端的情况,正则化参数\lambda非常大,因此对权重的惩罚非常大,导致权重很小,小到约等于0。因为公式z=W^Tx + b,我们如果不考虑偏置。就会得到z=W^Tx=0\cdot x=0,这样一来从神经网络的在该节点的输出a=tanh(0)=0意味着这个神经元死亡了。如果用图来表示的话就是:

        显然,模型的复杂度被降低了,提高模型的泛化能力。

这篇关于【机器学习300问】74、如何理解深度学习中L2正则化技术?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913620

相关文章

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

深入理解Redis大key的危害及解决方案

《深入理解Redis大key的危害及解决方案》本文主要介绍了深入理解Redis大key的危害及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一、背景二、什么是大key三、大key评价标准四、大key 产生的原因与场景五、大key影响与危

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一