代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II

本文主要是介绍代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 491.递增子序列
    • 思路
    • 伪代码
    • CPP代码
    • 优化代码
  • 46.全排列
    • 思路
    • 伪代码
    • CPP代码
  • 47.全排列II
    • CPP代码

491.递增子序列

力扣题目链接

文章链接:491.递增子序列

视频连接:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列

状态:今天没时间了,随便记录一下!

思路

本题与90.子集II非常类似。

也就是本题的递增子序列有要求子集,然后还要去重,但是:本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!

这里用[4, 7, 6, 7]进行对比。

伪代码

  • 递归函数参数:求子序列,很明显一个元素不能重复使用,所以需要startIndex,调整下一层递归的起始位置。

    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex)
    
  • 终止条件:本题类似求子集问题,也要遍历树形结构找每一个结点,所以和78.子集类似,要遍历树形结构找每一个结点。其实可以不加终止条件,startIndex每次都会加1,并不会无限递归。本题收集结果有所不同,题目要求递增子序列大小至少为2,我们不要加return这样就可以取数上的所有结点啦:

if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,因为要取树上的所有节点
}
  • 单层搜索逻辑

同一父结点下的同层上使用过的元素就不能再使用了!这里我们使用set来进行去重。

使用set只记录本层元素是否重复使用,新的一层uset都会被重新定义(清空)。

unordered_set<int> uset; // 使用set来对本层元素进行去重
for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();
}

CPP代码

// 版本一
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);// 注意这里不要加return,要取树上的节点}unordered_set<int> uset; // 使用set对本层元素进行去重for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| uset.find(nums[i]) != uset.end()) {continue;}uset.insert(nums[i]); // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

优化代码

这里数值范围较小,我们使用数组来做哈希可以对代码进行优化:

程序运行的时候对unordered_set 频繁的insertunordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且每次重新定义set,insert的时候其底层的符号表也要做相应的扩充,也是费事的。

// 版本二
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& nums, int startIndex) {if (path.size() > 1) {result.push_back(path);}int used[201] = {0}; // 这里使用数组来进行去重操作,题目说数值范围[-100, 100]for (int i = startIndex; i < nums.size(); i++) {if ((!path.empty() && nums[i] < path.back())|| used[nums[i] + 100] == 1) {continue;}used[nums[i] + 100] = 1; // 记录这个元素在本层用过了,本层后面不能再用了path.push_back(nums[i]);backtracking(nums, i + 1);path.pop_back();}}
public:vector<vector<int>> findSubsequences(vector<int>& nums) {result.clear();path.clear();backtracking(nums, 0);return result;}
};

46.全排列

46.全排列
文章链接:46.全排列

视频连接:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列

状态:今天没时间了,随便记录一下!

思路

排列与组合(包括分割和子集都近似于组合问题,所以我们总是处理前对其进行排序)相比,排列是有顺序的。总而言之排列是强调元素顺序的

全排列问题的树形结构如图:

从树形结构可以看出,我们每次都是从头开始,即使元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

这里我们会使用used数组,记录此时path里都有哪些元素使用啦,一个排列里一个元素只能使用一次。

伪代码

  • 递归函数参数:正如上文中所讲的,我们需要一个used数组
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件:

    • 上图中可以看出,叶子结点收获结果,那么如何判断到了叶子结点呢,本题的判断很简单,path数组的大小达到和nums数组一样大的时候,就说明找到了全排列
    // 此时说明找到了一组
    if (path.size() == nums.size()) {result.push_back(path);return;
    }
    
  • 单层搜索的逻辑:

    • 排列问题和之前写的组合、切割、子集问题最大的不同就是不用startindex来指明遍历的位置了,因为我们每次都要从头开始搜索,正如上文描述的那样。这里我们使用used。
    for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;
    }
    

CPP代码

class Solution {
public:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {if (used[i] == true) continue; // path里已经收录的元素,直接跳过used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};

47.全排列II

力扣题目链接

文章链接:47.全排列II

视频连接:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II

状态:今天没时间了,随便记录一下!

这题很有意思,这里给定的是一个包含了重复数字的序列,要返回所有不重复的全排列。很明显,需要去重

那么我们这里要判断了,是树层去重呢,还是树枝去重?

![在这里插入图片描述]()
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;
}

我们在40.组合总和II、90.子集II中已经详细论述过去重逻辑的写法,这里直接给出代码

CPP代码

class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking (vector<int>& nums, vector<bool>& used) {// 此时说明找到了一组if (path.size() == nums.size()) {result.push_back(path);return;}for (int i = 0; i < nums.size(); i++) {// used[i - 1] == true,说明同一树枝nums[i - 1]使用过// used[i - 1] == false,说明同一树层nums[i - 1]使用过// 如果同一树层nums[i - 1]使用过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == false) {used[i] = true;path.push_back(nums[i]);backtracking(nums, used);path.pop_back();used[i] = false;}}}
public:vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(), nums.end()); // 排序vector<bool> used(nums.size(), false);backtracking(nums, used);return result;}
};// 时间复杂度: 最差情况所有元素都是唯一的。复杂度和全排列1都是 O(n! * n) 对于 n 个元素一共有 n! 中排列方案。而对于每一个答案,我们需要 O(n) 去复制最终放到 result 数组
// 空间复杂度: O(n) 回溯树的深度取决于我们有多少个元素

这篇关于代码随想录算法训练营DAY28(记录)|C++回溯算法Part.5|491.递增子序列、46.全排列、47.全排列II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913479

相关文章

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时