【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码

2024-04-17 23:20

本文主要是介绍【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Manacher算法作用

1.

给你一个字符串str,要你求这个字符串的最长回文子串的长度,或者求这个字符串的最长回文子串在str中开始位置的下标。

2.

暴力解法,中心扩散算法,时间复杂度O(N*2)。Manacher算法可以用O(N)解决这个问题。

Manacher字符串

1.

将str转化为ManacherString,例如str="abcd",那么ManacherString="#a#b#c#d#"。

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

回文半径数组

1.

例如str="aabaca",对应的ManacherString数组="#a#a#b#a#c#a#"。

回文半径数组parr,大小size==ManacherSting.size。MS(ManacherString)一一对应。

2.

对于i=0位置的parr,以i==0为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是1。

那么parr[i]=1/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

对于i=1位置的parr,以i==1为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是3。

那么parr[i]=3/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

以此类推

3.

对于每一个位置,i表示的是回文串的中心位置。

4.

以i位置为中心,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。注意这个下标是MS中的下标。

5.

每一个回文直径最左边的元素和最右边的元素一定是"#"。

6.

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

  • MS中字符如果在原字符串str中存在,下标除以2对应的是再str中的下标。

依靠MS特点找到对应原串str中的回文串区间。

以i位置为例,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。

那么对应str中最左边的下标是(i-parr[i]+1)/2,对应str中最右边的下标是((i+parr[i]-1)-1)/2。

Manacher算法

1.

当我们把所有的MS对应的parr计算完,找到最长回文半径的中心c,对应MS中回文串最左边下标是c-parr[c]+1,对应MS中回文串最右边下标是c+parr[c]-1。

对应str原串中最左边的下标是(c-parr[c]+1)/2,对应str原串中最右边的下标是((c+parr[c]-1)-1)/2。

此时这两个下标就是最长回文串的左右区间。

2.

计算回文半径数组(Manacher算法)。

从左往右开始计算parr[i],当我们计算i位置的parr[i]时,表示我们已经求出来了parr[0]~parr[i-1]的值。

当然也可以从右往左计算parr[i],我们只讨论从左往右计算的情况。

3.

定义r表示0~i-1区间中所有位置所能往右扩展的最长回文串右边最远的下标+1位置。

也就是每一个位置最长回文串最右边的下标+1位置。而r记录这个位置最大的值。

定义c表示这个r所对应的回文中心下标。

例如MS="#a#a#b#a"。

i==0时,r=-1,c=-1。

i==1时,r=1,c=0。表示以i=0为中心扩展的回文串区间是[0,0],r=0+1。

i==2时,r=4,c=1。表示以i=1为中心扩展的回文串区间是[0,3],r=3+1。所能往右边扩展最远的距离。

i==3时,r=5,c=2。表示以i=2为中心扩展的回文串区间时[0,4],r=4+1。所能往右边扩展最远的距离。

以此类推。注意并不是最长的回文串对应的r,而是所有位置对应r的最大值。

4.

此时计算i位置的parr[i],0~i-1parr值都计算完毕。

如果此时i<r。有三种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内,并且不压线。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,并且不压线,属于第一种情况,此时parr[i]=parr[2*c-i]。

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

Manacher算法证明

1.

如果此时i<r。有两种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,属于第一种情况,此时parr[i]=parr[2*c-i]。

A部分与c对称,LR范围是回文串,因此对称过去的字符串是A的逆序。

又因为A字符串是回文串,回文串的逆序是本身。

所以对称过去的字符串与A相等。

a==y,b==x。a!=b,x!=y。因此此时对称过去的区间是以i为中心的最长回文串区间。

2.

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

AB关于c对称,AB互为逆序,A本身是回文串,A的逆序等于A本身,因此AB相等。这是以i为中心最长回文串的下界。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i],然后不断扩展区间。

3.

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

同理A与对称过去的子串是相同的,此时也是以i为中心最长回文串的下界,到底有多长还不知道,还需要继续扩展。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i]。不断循环匹配即可。

4.

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

此时以i位置为中心最长回文串长度下界是1,然后左边待匹配下标是i-parr[i],右边待匹配下标是i+parr[i]。不断循环匹配扩展长度。

Manacher算法代码

代码统一计算以i位置为中心最长回文串的下界,然后统一进行回文串扩展操作,失败就返回,成功就继续。

小结论:MS中最长的回文半径-1等于str最长回文串直径

 
#include<bits/stdc++.h>
using namespace std;
class ManacherCode {
public:static int manacher(string s) {if (s.size() == 0) return 0;string str = manacherString(s);vector<int> pArr(str.size());int c = -1; int r = -1;int max1 = INT_MIN;for (int i = 0; i < str.size(); i++) {pArr[i] = r > i ? min(pArr[2 * c - i], r - i) : 1;while (i + pArr[i] < str.size() && i - pArr[i] >= 0) {if (str[i - pArr[i]] == str[i + pArr[i]]) {pArr[i]++;} else {break;}}if (i + pArr[i] > r) {r = i + pArr[i];c = i;}max1 = max(max1, pArr[i]);}return max1 - 1;}static string manacherString(string s) {string str(2 * s.size() + 1, '\0');int index = 0;for (int i = 0; i < str.size(); i++) {str[i] = (i & 1) == 0 ? '#' : s[index++];}return str;}
};int main() {string str = { "babad" };cout << ManacherCode().manacher(str);
}

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913140

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P