【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码

2024-04-17 23:20

本文主要是介绍【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Manacher算法作用

1.

给你一个字符串str,要你求这个字符串的最长回文子串的长度,或者求这个字符串的最长回文子串在str中开始位置的下标。

2.

暴力解法,中心扩散算法,时间复杂度O(N*2)。Manacher算法可以用O(N)解决这个问题。

Manacher字符串

1.

将str转化为ManacherString,例如str="abcd",那么ManacherString="#a#b#c#d#"。

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

回文半径数组

1.

例如str="aabaca",对应的ManacherString数组="#a#a#b#a#c#a#"。

回文半径数组parr,大小size==ManacherSting.size。MS(ManacherString)一一对应。

2.

对于i=0位置的parr,以i==0为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是1。

那么parr[i]=1/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

对于i=1位置的parr,以i==1为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是3。

那么parr[i]=3/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

以此类推

3.

对于每一个位置,i表示的是回文串的中心位置。

4.

以i位置为中心,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。注意这个下标是MS中的下标。

5.

每一个回文直径最左边的元素和最右边的元素一定是"#"。

6.

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

  • MS中字符如果在原字符串str中存在,下标除以2对应的是再str中的下标。

依靠MS特点找到对应原串str中的回文串区间。

以i位置为例,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。

那么对应str中最左边的下标是(i-parr[i]+1)/2,对应str中最右边的下标是((i+parr[i]-1)-1)/2。

Manacher算法

1.

当我们把所有的MS对应的parr计算完,找到最长回文半径的中心c,对应MS中回文串最左边下标是c-parr[c]+1,对应MS中回文串最右边下标是c+parr[c]-1。

对应str原串中最左边的下标是(c-parr[c]+1)/2,对应str原串中最右边的下标是((c+parr[c]-1)-1)/2。

此时这两个下标就是最长回文串的左右区间。

2.

计算回文半径数组(Manacher算法)。

从左往右开始计算parr[i],当我们计算i位置的parr[i]时,表示我们已经求出来了parr[0]~parr[i-1]的值。

当然也可以从右往左计算parr[i],我们只讨论从左往右计算的情况。

3.

定义r表示0~i-1区间中所有位置所能往右扩展的最长回文串右边最远的下标+1位置。

也就是每一个位置最长回文串最右边的下标+1位置。而r记录这个位置最大的值。

定义c表示这个r所对应的回文中心下标。

例如MS="#a#a#b#a"。

i==0时,r=-1,c=-1。

i==1时,r=1,c=0。表示以i=0为中心扩展的回文串区间是[0,0],r=0+1。

i==2时,r=4,c=1。表示以i=1为中心扩展的回文串区间是[0,3],r=3+1。所能往右边扩展最远的距离。

i==3时,r=5,c=2。表示以i=2为中心扩展的回文串区间时[0,4],r=4+1。所能往右边扩展最远的距离。

以此类推。注意并不是最长的回文串对应的r,而是所有位置对应r的最大值。

4.

此时计算i位置的parr[i],0~i-1parr值都计算完毕。

如果此时i<r。有三种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内,并且不压线。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,并且不压线,属于第一种情况,此时parr[i]=parr[2*c-i]。

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

Manacher算法证明

1.

如果此时i<r。有两种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,属于第一种情况,此时parr[i]=parr[2*c-i]。

A部分与c对称,LR范围是回文串,因此对称过去的字符串是A的逆序。

又因为A字符串是回文串,回文串的逆序是本身。

所以对称过去的字符串与A相等。

a==y,b==x。a!=b,x!=y。因此此时对称过去的区间是以i为中心的最长回文串区间。

2.

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

AB关于c对称,AB互为逆序,A本身是回文串,A的逆序等于A本身,因此AB相等。这是以i为中心最长回文串的下界。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i],然后不断扩展区间。

3.

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

同理A与对称过去的子串是相同的,此时也是以i为中心最长回文串的下界,到底有多长还不知道,还需要继续扩展。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i]。不断循环匹配即可。

4.

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

此时以i位置为中心最长回文串长度下界是1,然后左边待匹配下标是i-parr[i],右边待匹配下标是i+parr[i]。不断循环匹配扩展长度。

Manacher算法代码

代码统一计算以i位置为中心最长回文串的下界,然后统一进行回文串扩展操作,失败就返回,成功就继续。

小结论:MS中最长的回文半径-1等于str最长回文串直径

 
#include<bits/stdc++.h>
using namespace std;
class ManacherCode {
public:static int manacher(string s) {if (s.size() == 0) return 0;string str = manacherString(s);vector<int> pArr(str.size());int c = -1; int r = -1;int max1 = INT_MIN;for (int i = 0; i < str.size(); i++) {pArr[i] = r > i ? min(pArr[2 * c - i], r - i) : 1;while (i + pArr[i] < str.size() && i - pArr[i] >= 0) {if (str[i - pArr[i]] == str[i + pArr[i]]) {pArr[i]++;} else {break;}}if (i + pArr[i] > r) {r = i + pArr[i];c = i;}max1 = max(max1, pArr[i]);}return max1 - 1;}static string manacherString(string s) {string str(2 * s.size() + 1, '\0');int index = 0;for (int i = 0; i < str.size(); i++) {str[i] = (i & 1) == 0 ? '#' : s[index++];}return str;}
};int main() {string str = { "babad" };cout << ManacherCode().manacher(str);
}

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913140

相关文章

Security OAuth2 单点登录流程

单点登录(英语:Single sign-on,缩写为 SSO),又译为单一签入,一种对于许多相互关连,但是又是各自独立的软件系统,提供访问控制的属性。当拥有这项属性时,当用户登录时,就可以获取所有系统的访问权限,不用对每个单一系统都逐一登录。这项功能通常是以轻型目录访问协议(LDAP)来实现,在服务器上会将用户信息存储到LDAP数据库中。相同的,单一注销(single sign-off)就是指

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO