【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码

2024-04-17 23:20

本文主要是介绍【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Manacher算法作用

1.

给你一个字符串str,要你求这个字符串的最长回文子串的长度,或者求这个字符串的最长回文子串在str中开始位置的下标。

2.

暴力解法,中心扩散算法,时间复杂度O(N*2)。Manacher算法可以用O(N)解决这个问题。

Manacher字符串

1.

将str转化为ManacherString,例如str="abcd",那么ManacherString="#a#b#c#d#"。

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

回文半径数组

1.

例如str="aabaca",对应的ManacherString数组="#a#a#b#a#c#a#"。

回文半径数组parr,大小size==ManacherSting.size。MS(ManacherString)一一对应。

2.

对于i=0位置的parr,以i==0为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是1。

那么parr[i]=1/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

对于i=1位置的parr,以i==1为中心,往两边扩展,最长的回文串的长度是多少?显然最长长度是3。

那么parr[i]=3/2+1。表示包括i位置元素在内,往左边或者右边扩展,属于回文串的最长长度。

以此类推

3.

对于每一个位置,i表示的是回文串的中心位置。

4.

以i位置为中心,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。注意这个下标是MS中的下标。

5.

每一个回文直径最左边的元素和最右边的元素一定是"#"。

6.

ManacherString的特点:

  • ManacherString中,下标为偶数位置是"#"。

  • 偶数下标对应的"#",下标/2是后面那个字符在str对应的下标。

  • 偶数下标对应的"#",(下标-1)/2是前面那个字符在str对应的下标。

  • MS中字符如果在原字符串str中存在,下标除以2对应的是再str中的下标。

依靠MS特点找到对应原串str中的回文串区间。

以i位置为例,对应的回文直径最左边的下标是i-parr[i]+1,最右边的下标是i+paa[i]-1。

那么对应str中最左边的下标是(i-parr[i]+1)/2,对应str中最右边的下标是((i+parr[i]-1)-1)/2。

Manacher算法

1.

当我们把所有的MS对应的parr计算完,找到最长回文半径的中心c,对应MS中回文串最左边下标是c-parr[c]+1,对应MS中回文串最右边下标是c+parr[c]-1。

对应str原串中最左边的下标是(c-parr[c]+1)/2,对应str原串中最右边的下标是((c+parr[c]-1)-1)/2。

此时这两个下标就是最长回文串的左右区间。

2.

计算回文半径数组(Manacher算法)。

从左往右开始计算parr[i],当我们计算i位置的parr[i]时,表示我们已经求出来了parr[0]~parr[i-1]的值。

当然也可以从右往左计算parr[i],我们只讨论从左往右计算的情况。

3.

定义r表示0~i-1区间中所有位置所能往右扩展的最长回文串右边最远的下标+1位置。

也就是每一个位置最长回文串最右边的下标+1位置。而r记录这个位置最大的值。

定义c表示这个r所对应的回文中心下标。

例如MS="#a#a#b#a"。

i==0时,r=-1,c=-1。

i==1时,r=1,c=0。表示以i=0为中心扩展的回文串区间是[0,0],r=0+1。

i==2时,r=4,c=1。表示以i=1为中心扩展的回文串区间是[0,3],r=3+1。所能往右边扩展最远的距离。

i==3时,r=5,c=2。表示以i=2为中心扩展的回文串区间时[0,4],r=4+1。所能往右边扩展最远的距离。

以此类推。注意并不是最长的回文串对应的r,而是所有位置对应r的最大值。

4.

此时计算i位置的parr[i],0~i-1parr值都计算完毕。

如果此时i<r。有三种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内,并且不压线。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,并且不压线,属于第一种情况,此时parr[i]=parr[2*c-i]。

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

Manacher算法证明

1.

如果此时i<r。有两种情况。

第一种情况,2*c-i对应的回文串都在[L,R]区间内。2*c-i时i关于c的对称点。以2*c-i为中心对应的最长回文串,如果在[L,R]内,属于第一种情况,此时parr[i]=parr[2*c-i]。

A部分与c对称,LR范围是回文串,因此对称过去的字符串是A的逆序。

又因为A字符串是回文串,回文串的逆序是本身。

所以对称过去的字符串与A相等。

a==y,b==x。a!=b,x!=y。因此此时对称过去的区间是以i为中心的最长回文串区间。

2.

第二种情况,2*c-i对应的回文串不都在[L,R]区间内。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

AB关于c对称,AB互为逆序,A本身是回文串,A的逆序等于A本身,因此AB相等。这是以i为中心最长回文串的下界。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i],然后不断扩展区间。

3.

第三种情况,2*c-i对应的回文串都在[L,R]区间内并且压线。此时parr[i]的下界为r-i,即parr[i]=r-i。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

同理A与对称过去的子串是相同的,此时也是以i为中心最长回文串的下界,到底有多长还不知道,还需要继续扩展。

左边待匹配位置是i-parr[i],右边待匹配位置是i+parr[i]。不断循环匹配即可。

4.

如果此时i>=r。此时parr[i]的下界为1。即parr[i]=1。然后左边下一个待匹配的位置是i-parr[i](parr[i]==r-i),右边下一个待匹配的位置是i+parr[i]。然后循环匹配i-parr[i]和i+parr[i],直到不能再扩展,以求parr[i]的值。

此时以i位置为中心最长回文串长度下界是1,然后左边待匹配下标是i-parr[i],右边待匹配下标是i+parr[i]。不断循环匹配扩展长度。

Manacher算法代码

代码统一计算以i位置为中心最长回文串的下界,然后统一进行回文串扩展操作,失败就返回,成功就继续。

小结论:MS中最长的回文半径-1等于str最长回文串直径

 
#include<bits/stdc++.h>
using namespace std;
class ManacherCode {
public:static int manacher(string s) {if (s.size() == 0) return 0;string str = manacherString(s);vector<int> pArr(str.size());int c = -1; int r = -1;int max1 = INT_MIN;for (int i = 0; i < str.size(); i++) {pArr[i] = r > i ? min(pArr[2 * c - i], r - i) : 1;while (i + pArr[i] < str.size() && i - pArr[i] >= 0) {if (str[i - pArr[i]] == str[i + pArr[i]]) {pArr[i]++;} else {break;}}if (i + pArr[i] > r) {r = i + pArr[i];c = i;}max1 = max(max1, pArr[i]);}return max1 - 1;}static string manacherString(string s) {string str(2 * s.size() + 1, '\0');int index = 0;for (int i = 0; i < str.size(); i++) {str[i] = (i & 1) == 0 ? '#' : s[index++];}return str;}
};int main() {string str = { "babad" };cout << ManacherCode().manacher(str);
}

结尾

最后,感谢您阅读我的文章,希望这些内容能够对您有所启发和帮助。如果您有任何问题或想要分享您的观点,请随时在评论区留言。

同时,不要忘记订阅我的博客以获取更多有趣的内容。在未来的文章中,我将继续探讨这个话题的不同方面,为您呈现更多深度和见解。

谢谢您的支持,期待与您在下一篇文章中再次相遇!

这篇关于【五十四】【算法分析与设计】Manacher算法,Manacher算法作用,Manacher算法流程,Manacher算法证明,Manacher算法代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913140

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

css中的 vertical-align与line-height作用详解

《css中的vertical-align与line-height作用详解》:本文主要介绍了CSS中的`vertical-align`和`line-height`属性,包括它们的作用、适用元素、属性值、常见使用场景、常见问题及解决方案,详细内容请阅读本文,希望能对你有所帮助... 目录vertical-ali