算法练习第18天|111.二叉树的最小深度

2024-04-17 23:04

本文主要是介绍算法练习第18天|111.二叉树的最小深度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

111.二叉树的最小深度

111. 二叉树的最小深度 - 力扣(LeetCode)icon-default.png?t=N7T8https://leetcode.cn/problems/minimum-depth-of-binary-tree/description/

题目描述:

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

题目分析:

按照上一篇文章中所写的求二叉树的最大深度对的解法,这道题应该不难。

后序递归解法:

采用比较容易理解的后续递归及递归三部曲可以得到如下代码:

1. 递归第一步:确定递归函数的参数和返回值

参数为要传入的二叉树根节点,返回的是int类型的深度。

代码如下:

int getDepth(TreeNode* node)

2. 递归第二步:确定终止条件 

终止条件也是遇到空节点返回0,表示当前节点的高度为0。

代码如下:

if (node == NULL) return 0;

3. 递归第三步:确定单层递归的逻辑 

这块和求最大深度可就不一样了,一些同学可能会写如下代码:

int leftDepth = getDepth(node->left);
int rightDepth = getDepth(node->right);
int result = 1 + min(leftDepth, rightDepth);  //关键问题出在这一步
return result;

 对于左右子树均存在时,上述代码没有问题。但是当子树不存在时,由前两步getDepth()得到的深度会存在0,如下图所示:

回顾一下题目所给的最小深度的定义:

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。注意是到最近的叶子节点,即没有左右子节点的叶子节点。

那么刚刚所写的单层递归逻辑的代码中是没有判断是否为叶子节点的功能的:

int leftDepth = getDepth(node->left);
int rightDepth = getDepth(node->right);
int result = 1 + min(leftDepth, rightDepth);  //关键问题出在这一步
return result;

补救措施就是在得到leftDepth和rightDepth之后,要判断一下左右子树的存在情况。

  • 如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度。
  • 反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。
  • 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。

 代码如下:

int leftDepth = getDepth(node->left);           // 左
int rightDepth = getDepth(node->right);         // 右// 中
// 当一个左子树为空,右不为空,这时并不是最低点
if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;
}   
// 当一个右子树为空,左不为空,这时并不是最低点
if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;
}
int result = 1 + min(leftDepth, rightDepth);
return result;

整体代码如下:

class Solution {
public:int getDepth(TreeNode* node) {if (node == NULL) return 0;int leftDepth = getDepth(node->left);           // 左int rightDepth = getDepth(node->right);         // 右// 中// 当一个左子树为空,右不为空,这时并不是最低点if (node->left == NULL && node->right != NULL) { return 1 + rightDepth;}   // 当一个右子树为空,左不为空,这时并不是最低点if (node->left != NULL && node->right == NULL) { return 1 + leftDepth;}int result = 1 + min(leftDepth, rightDepth);return result;}int minDepth(TreeNode* root) {return getDepth(root);}
};

上述代码是写了一个专门的getDepth函数进行递归,也可以不写,直接在力扣提供的函数minDepth上进行递归,如下所示:

class Solution {
public:int minDepth(TreeNode* root) {if(root == nullptr) return 0;//左int leftDepth = minDepth(root->left);//右int rightDepth = minDepth(root->right);if(root->left == nullptr && root->right != nullptr) return rightDepth + 1;if(root->left != nullptr && root->right == nullptr)return leftDepth + 1;int result = min(leftDepth, rightDepth) + 1;return result;}
};

注意,上面两个写法中的result = min(leftDepth, rightDepth) + 1; 这行代码即包含了左右子树均存在的情况,还包含了左右子树均不存在的情况。均存在时,就去最小值加1;均不存在时,leftDepth和rightDepth均为0,那么算上此时两个空子树的父节点那一层,result做了加1操作(可以想象整个二叉树只有一个根节点组成时的情形)。

所以,代码里的+1操作,就是在后序遍历中处理完了左右子树后,开始考虑子树对应的根节点计算深度(左右中)。

层序遍历解法:

在二叉树层序遍历文章的基础上来实现最小深度的求解,关键一点就是第一次遍历到某个节点的左右孩子都为空的时候,说明遍历到最低点了,此时应该直接return depth,程序运行结束。如果其中一个孩子不为空则不是最低点。

代码如下:

class Solution {
public://层序遍历int minDepth(TreeNode* root) {if(root == nullptr) return 0;queue<TreeNode*> que;que.push(root);int depth = 0;while(!que.empty()){int size = que.size();depth++;for(int i = 0; i < size; ++i){TreeNode*  node = que.front();que.pop();//最低处判断放这里也行// if(node->left == nullptr && node->right == nullptr)//     return depth;if(node->left) que.push(node->left);if(node->right) que.push(node->right);if(node->left == nullptr && node->right == nullptr)return depth;               }}return depth;}
};

这篇关于算法练习第18天|111.二叉树的最小深度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/913098

相关文章

代码随想录算法训练营:12/60

非科班学习算法day12 | LeetCode150:逆波兰表达式 ,Leetcode239: 滑动窗口最大值  目录 介绍 一、基础概念补充: 1.c++字符串转为数字 1. std::stoi, std::stol, std::stoll, std::stoul, std::stoull(最常用) 2. std::stringstream 3. std::atoi, std

人工智能机器学习算法总结神经网络算法(前向及反向传播)

1.定义,意义和优缺点 定义: 神经网络算法是一种模仿人类大脑神经元之间连接方式的机器学习算法。通过多层神经元的组合和激活函数的非线性转换,神经网络能够学习数据的特征和模式,实现对复杂数据的建模和预测。(我们可以借助人类的神经元模型来更好的帮助我们理解该算法的本质,不过这里需要说明的是,虽然名字是神经网络,并且结构等等也是借鉴了神经网络,但其原型以及算法本质上还和生物层面的神经网络运行原理存在

大林 PID 算法

Dahlin PID算法是一种用于控制和调节系统的比例积分延迟算法。以下是一个简单的C语言实现示例: #include <stdio.h>// DALIN PID 结构体定义typedef struct {float SetPoint; // 设定点float Proportion; // 比例float Integral; // 积分float Derivative; // 微分flo

LeetCode--155 最小栈

题目 设计一个支持 push,pop,top 操作,并能在常数时间内检索到最小元素的栈。push(x) -- 将元素 x 推入栈中。pop() -- 删除栈顶的元素。top() -- 获取栈顶元素。getMin() -- 检索栈中的最小元素。 示例 MinStack minStack = new MinStack();minStack.push(-2);minStack.push

剑指offer(C++)--平衡二叉树

题目 输入一棵二叉树,判断该二叉树是否是平衡二叉树。 class Solution {public:bool IsBalanced_Solution(TreeNode* pRoot) {if(pRoot==NULL)return true;int left_depth = getdepth(pRoot->left);int right_depth = getdepth(pRoot->rig

二叉树三种遍历方式及其实现

一、基本概念 每个结点最多有两棵子树,左子树和右子树,次序不可以颠倒。 性质: 1、非空二叉树的第n层上至多有2^(n-1)个元素。 2、深度为h的二叉树至多有2^h-1个结点。 3、对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。 满二叉树:所有终端都在同一层次,且非终端结点的度数为2。 在满二叉树中若其深度为h,则其所包含

好书推荐《深度学习入门 基于Python的理论与实现》

如果你对Python有一定的了解,想对深度学习的基本概念和工作原理有一个透彻的理解,想利用Python编写出简单的深度学习程序,那么这本书绝对是最佳的入门教程,理由如下:     (1)撰写者是一名日本普通的AI工作者,主要记录了他在深度学习中的笔记,这本书站在学习者的角度考虑,秉承“解剖”深度学习的底层技术,不使用任何现有的深度学习框架、尽可能仅使用基本的数学知识和Python库。从零创建一个

LeetCode 算法:二叉树的中序遍历 c++

原题链接🔗:二叉树的中序遍历 难度:简单⭐️ 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root = [1,null,2,3] 输出:[1,3,2] 示例 2: 输入:root = [] 输出:[] 示例 3: 输入:root = [1] 输出:[1] 提示: 树中节点数目在范围 [0, 100] 内 -100 <= Node.

【Java算法】滑动窗口 下

​ ​    🔥个人主页: 中草药 🔥专栏:【算法工作坊】算法实战揭秘 🦌一.水果成篮 题目链接:904.水果成篮 ​ 算法原理 算法原理是使用“滑动窗口”(Sliding Window)策略,结合哈希表(Map)来高效地统计窗口内不同水果的种类数量。以下是详细分析: 初始化:创建一个空的哈希表 map 用来存储每种水果的数量,初始化左右指针 left

ROS2从入门到精通4-4:局部控制插件开发案例(以PID算法为例)

目录 0 专栏介绍1 控制插件编写模板1.1 构造控制插件类1.2 注册并导出插件1.3 编译与使用插件 2 基于PID的路径跟踪原理3 控制插件开发案例(PID算法)常见问题 0 专栏介绍 本专栏旨在通过对ROS2的系统学习,掌握ROS2底层基本分布式原理,并具有机器人建模和应用ROS2进行实际项目的开发和调试的工程能力。 🚀详情:《ROS2从入门到精通》 1 控制插