facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署

本文主要是介绍facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一. 人脸检测
    • 二.人脸识别facenet
      • 2.1 训练人脸识别模型
      • 2.2 导出ONNX
      • 2.3 测试
    • 三.人脸属性(性别、年龄、表情、是否戴口罩)
      • 3.1 训练
      • 3.2 导出ONNX
      • 3.3 测试
    • 四. 集成应用
    • 五、Jetson 部署
      • 5.1 NX
      • 5.2 NANO

一. 人脸检测

代码位置:1.detect

运行环境:TensorRT

NVIDIA TAO(training, adapting and optimizing)工具包是一款专门用于深度学习的工具包,它可以帮助用户轻松地训练和优化深度学习模型,使其能够在各种设备上进行推理操作。TAO工具包基于TensorFlow和PyTorch构建,采用了迁移学习的技术,可以将用户自己的模型或预训练模型与实际或合成数据进行适配,并针对目标平台进行推理吞吐量的优化,从而使整个训练过程变得更加简单、高效。TAO工具包的使用不需要专业的人工智能知识或大量的训练数据集,因此,它可以帮助更多的人轻松进入深度学习的领域,快速实现各种应用场景。

模型地址:https://catalog.ngc.nvidia.com/models

使用 TAO的预训练模型:FaceDetect:

  • 这个模型接受736x416x3维度的输入张量,并输出46x26x4的bbox坐标张量和46x26x1的类别置信度张量。这些输出张量需要经过NMS或DBScan聚类算法进行后处理,以创建适当的边界框。
  • 输入:通道顺序为NCHW,其中N = Batch Size,C = 通道数(3),H = 图像高度(416),W = 图像宽度(736)。输入比例尺度为1/255.0。均值减法:无。
  • 输出:输入图像中每个检测到的人脸的类别标签和边界框坐标。
  • 后处理参考代码:
    • 来源一
    • 来源二
# 启动docker
docker run --gpus all --name facenet_env -p 1936:1935 -p 8556:8554 -v `pwd`:/app  -it nvcr.io/nvidia/tensorrt:22.08-py3 bash# 下载检测模型
curl -LO 'https://api.ngc.nvidia.com/v2/models/nvidia/tao/facenet/versions/pruned_quantized_v2.0.1/files/model.etlt'
curl -LO 'https://api.ngc.nvidia.com/v2/models/nvidia/tao/facenet/versions/pruned_quantized_v2.0.1/files/int8_calibration.txt'# download tao-converter
curl -LO 'https://api.ngc.nvidia.com/v2/resources/nvidia/tao/tao-converter/versions/v3.22.05_trt8.4_x86/files/tao-converter'# 给运行权限
chmod +x ./TAO/tao-converter
#模型转换
./TAO/tao-converter -k nvidia_tlt -d 3,416,736 model/model.etlt -t int8 -c model/int8_calibration.txt#编译facedet_test 并运行
cmake -B build .
cmake --build build
./build/facedet_test --model saved.engine --img images/test_face.jpg

二.人脸识别facenet

2.1 训练人脸识别模型

代码位置:2.facenet_train

运行环境:Pytorch

对应视频课程教程来操作,注意解压文件可能出现中文乱码:

# 启动容器
docker run --gpus all -it --name env_pyt_1.12 -v $(pwd):/app nvcr.io/nvidia/pytorch:22.03-py3 # 解压zip
unzip -O cp936 压缩文件.zip -d ../
# 解压tar
tar -xvzf 压缩文件.tar.gz -C ../

2.2 导出ONNX

代码位置:3.facenet_export

运行环境:Pytorch

# 在Pytorch环境下生成ONNX文件
python export.py

2.3 测试

代码位置:4.facenet

运行环境:TensorRT

# 生成TensorRT engine
./build/build -onnx_file ./weights/facenet_sim.onnx --input_h 112 --input_w 112 # 生成人脸库图片列表
find ./crop -type f -printf "%p\n" > face_list.txt# 测试人脸
./build/facenet_test --img ./test1.jpg 

三.人脸属性(性别、年龄、表情、是否戴口罩)

3.1 训练

代码位置:5.attributes_train

运行环境:Tensorflow

参考附件:5.attributes_train内容,分别训练年龄、表情、年龄、是否戴口罩。可以增加更多属性,或者选择更深网络。

3.2 导出ONNX

代码位置:6.attributes_export

运行环境:Tensorflow

# 安装转换工具:https://github.com/onnx/tensorflow-onnx
pip install tf2onnx# 性别
python -m tf2onnx.convert --saved-model model/model_gender  --output gender.onnx --opset 10
# 年龄
python -m tf2onnx.convert --saved-model model/model_age  --output age.onnx --opset 10
# 口罩
python -m tf2onnx.convert --saved-model model/model_mask --output mask.onnx --opset 10
# 表情
python -m tf2onnx.convert --saved-model model/model_emotion  --output emotion.onnx --opset 10# 简化
python simplify.py emotion.onnx

3.3 测试

代码位置:7.attributes_test

运行环境:TensorRT

# 转TRT engine(以表情分类模型为例)
./build/build --onnx_file weights/emotion_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc# 性别测试
./build/attribute_test --model weights/gender_sim.engine --type gender --img images/1.gender/man.png./build/attribute_test --model weights/gender_sim.engine --type gender --img images/1.gender/woman.png# 年龄测试
./build/attribute_test --model weights/age_sim.engine --type age --img images/2.age/old.png./build/attribute_test --model weights/age_sim.engine --type age --img images/2.age/young.png# 口罩测试
./build/attribute_test --model weights/mask_sim.engine --type mask --img images/3.mask/unmask.jpg./build/attribute_test --model weights/mask_sim.engine --type mask --img images/3.mask/mask.png# 表情测试
./build/attribute_test --model weights/emotion_sim.engine --type emotion --img images/4.emotion/angry.jpg./build/attribute_test --model weights/emotion_sim.engine --type emotion --img images/4.emotion/sad.jpg

四. 集成应用

代码位置:8.app

运行环境:TensorRT

# 依次build 对应的engine# 编译运行stream, 其中很多默认参数已经配置好了,因此,不用传其他参数,如果有模型名不一致,可以查看flags定义传入对应的模型文件。# 生成人脸库图片列表
find ./crop -type f -printf "%p\n" > face_list.txt# 运行程序
./build/stream --vid rtsp://localhost:8554/live1.sdp# 查看推流数据, 在vlc中打开rtmp://localhost:1935/live查看推流数据

五、Jetson 部署

5.1 NX

# 检测模型
sudo apt install curl
curl -LO 'https://api.ngc.nvidia.com/v2/resources/nvidia/tao/tao-converter/versions/v3.22.05_trt8.4_aarch64/files/tao-converter'chmod +x tao-converter./TAO/tao-converter -k nvidia_tlt -d 3,416,736 model/model.etlt -t int8 -c model/int8_calibration.txt# facenet识别模型
./build/build -onnx_file ./backup_onnx/facenet_sim.onnx --input_h 112 --input_w 112 # 属性模型
./build/build --onnx_file ./backup_onnx/gender_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/age_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/emotion_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/mask_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc# 构建
export PATH=$PATH:/usr/local/cuda/bin# 测试
./build/stream --vid 

5.2 NANO

# 编译运行,nano上删除 /usr/src/tensorrt/samples/common/sampleUtils.cpp的依赖,同时在build.cu上删除safeCommon.h的include, 以及setMemoryPoolLimit的调用# 以及CMakeLists.txt CUDA ARCH
vim CMakeLists.txt
:%s/61/72/g # 更改编译的cuda arch

这篇关于facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/911546

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)