facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署

本文主要是介绍facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一. 人脸检测
    • 二.人脸识别facenet
      • 2.1 训练人脸识别模型
      • 2.2 导出ONNX
      • 2.3 测试
    • 三.人脸属性(性别、年龄、表情、是否戴口罩)
      • 3.1 训练
      • 3.2 导出ONNX
      • 3.3 测试
    • 四. 集成应用
    • 五、Jetson 部署
      • 5.1 NX
      • 5.2 NANO

一. 人脸检测

代码位置:1.detect

运行环境:TensorRT

NVIDIA TAO(training, adapting and optimizing)工具包是一款专门用于深度学习的工具包,它可以帮助用户轻松地训练和优化深度学习模型,使其能够在各种设备上进行推理操作。TAO工具包基于TensorFlow和PyTorch构建,采用了迁移学习的技术,可以将用户自己的模型或预训练模型与实际或合成数据进行适配,并针对目标平台进行推理吞吐量的优化,从而使整个训练过程变得更加简单、高效。TAO工具包的使用不需要专业的人工智能知识或大量的训练数据集,因此,它可以帮助更多的人轻松进入深度学习的领域,快速实现各种应用场景。

模型地址:https://catalog.ngc.nvidia.com/models

使用 TAO的预训练模型:FaceDetect:

  • 这个模型接受736x416x3维度的输入张量,并输出46x26x4的bbox坐标张量和46x26x1的类别置信度张量。这些输出张量需要经过NMS或DBScan聚类算法进行后处理,以创建适当的边界框。
  • 输入:通道顺序为NCHW,其中N = Batch Size,C = 通道数(3),H = 图像高度(416),W = 图像宽度(736)。输入比例尺度为1/255.0。均值减法:无。
  • 输出:输入图像中每个检测到的人脸的类别标签和边界框坐标。
  • 后处理参考代码:
    • 来源一
    • 来源二
# 启动docker
docker run --gpus all --name facenet_env -p 1936:1935 -p 8556:8554 -v `pwd`:/app  -it nvcr.io/nvidia/tensorrt:22.08-py3 bash# 下载检测模型
curl -LO 'https://api.ngc.nvidia.com/v2/models/nvidia/tao/facenet/versions/pruned_quantized_v2.0.1/files/model.etlt'
curl -LO 'https://api.ngc.nvidia.com/v2/models/nvidia/tao/facenet/versions/pruned_quantized_v2.0.1/files/int8_calibration.txt'# download tao-converter
curl -LO 'https://api.ngc.nvidia.com/v2/resources/nvidia/tao/tao-converter/versions/v3.22.05_trt8.4_x86/files/tao-converter'# 给运行权限
chmod +x ./TAO/tao-converter
#模型转换
./TAO/tao-converter -k nvidia_tlt -d 3,416,736 model/model.etlt -t int8 -c model/int8_calibration.txt#编译facedet_test 并运行
cmake -B build .
cmake --build build
./build/facedet_test --model saved.engine --img images/test_face.jpg

二.人脸识别facenet

2.1 训练人脸识别模型

代码位置:2.facenet_train

运行环境:Pytorch

对应视频课程教程来操作,注意解压文件可能出现中文乱码:

# 启动容器
docker run --gpus all -it --name env_pyt_1.12 -v $(pwd):/app nvcr.io/nvidia/pytorch:22.03-py3 # 解压zip
unzip -O cp936 压缩文件.zip -d ../
# 解压tar
tar -xvzf 压缩文件.tar.gz -C ../

2.2 导出ONNX

代码位置:3.facenet_export

运行环境:Pytorch

# 在Pytorch环境下生成ONNX文件
python export.py

2.3 测试

代码位置:4.facenet

运行环境:TensorRT

# 生成TensorRT engine
./build/build -onnx_file ./weights/facenet_sim.onnx --input_h 112 --input_w 112 # 生成人脸库图片列表
find ./crop -type f -printf "%p\n" > face_list.txt# 测试人脸
./build/facenet_test --img ./test1.jpg 

三.人脸属性(性别、年龄、表情、是否戴口罩)

3.1 训练

代码位置:5.attributes_train

运行环境:Tensorflow

参考附件:5.attributes_train内容,分别训练年龄、表情、年龄、是否戴口罩。可以增加更多属性,或者选择更深网络。

3.2 导出ONNX

代码位置:6.attributes_export

运行环境:Tensorflow

# 安装转换工具:https://github.com/onnx/tensorflow-onnx
pip install tf2onnx# 性别
python -m tf2onnx.convert --saved-model model/model_gender  --output gender.onnx --opset 10
# 年龄
python -m tf2onnx.convert --saved-model model/model_age  --output age.onnx --opset 10
# 口罩
python -m tf2onnx.convert --saved-model model/model_mask --output mask.onnx --opset 10
# 表情
python -m tf2onnx.convert --saved-model model/model_emotion  --output emotion.onnx --opset 10# 简化
python simplify.py emotion.onnx

3.3 测试

代码位置:7.attributes_test

运行环境:TensorRT

# 转TRT engine(以表情分类模型为例)
./build/build --onnx_file weights/emotion_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc# 性别测试
./build/attribute_test --model weights/gender_sim.engine --type gender --img images/1.gender/man.png./build/attribute_test --model weights/gender_sim.engine --type gender --img images/1.gender/woman.png# 年龄测试
./build/attribute_test --model weights/age_sim.engine --type age --img images/2.age/old.png./build/attribute_test --model weights/age_sim.engine --type age --img images/2.age/young.png# 口罩测试
./build/attribute_test --model weights/mask_sim.engine --type mask --img images/3.mask/unmask.jpg./build/attribute_test --model weights/mask_sim.engine --type mask --img images/3.mask/mask.png# 表情测试
./build/attribute_test --model weights/emotion_sim.engine --type emotion --img images/4.emotion/angry.jpg./build/attribute_test --model weights/emotion_sim.engine --type emotion --img images/4.emotion/sad.jpg

四. 集成应用

代码位置:8.app

运行环境:TensorRT

# 依次build 对应的engine# 编译运行stream, 其中很多默认参数已经配置好了,因此,不用传其他参数,如果有模型名不一致,可以查看flags定义传入对应的模型文件。# 生成人脸库图片列表
find ./crop -type f -printf "%p\n" > face_list.txt# 运行程序
./build/stream --vid rtsp://localhost:8554/live1.sdp# 查看推流数据, 在vlc中打开rtmp://localhost:1935/live查看推流数据

五、Jetson 部署

5.1 NX

# 检测模型
sudo apt install curl
curl -LO 'https://api.ngc.nvidia.com/v2/resources/nvidia/tao/tao-converter/versions/v3.22.05_trt8.4_aarch64/files/tao-converter'chmod +x tao-converter./TAO/tao-converter -k nvidia_tlt -d 3,416,736 model/model.etlt -t int8 -c model/int8_calibration.txt# facenet识别模型
./build/build -onnx_file ./backup_onnx/facenet_sim.onnx --input_h 112 --input_w 112 # 属性模型
./build/build --onnx_file ./backup_onnx/gender_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/age_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/emotion_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc
./build/build --onnx_file ./backup_onnx/mask_sim.onnx --input_h 48 --input_w 48 --input_c 1 --format nhwc# 构建
export PATH=$PATH:/usr/local/cuda/bin# 测试
./build/stream --vid 

5.2 NANO

# 编译运行,nano上删除 /usr/src/tensorrt/samples/common/sampleUtils.cpp的依赖,同时在build.cu上删除safeCommon.h的include, 以及setMemoryPoolLimit的调用# 以及CMakeLists.txt CUDA ARCH
vim CMakeLists.txt
:%s/61/72/g # 更改编译的cuda arch

这篇关于facenet人脸检测+人脸识别+性别识别+表情识别+年龄识别的C++部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/911546

相关文章

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

C++中std::distance使用方法示例

《C++中std::distance使用方法示例》std::distance是C++标准库中的一个函数,用于计算两个迭代器之间的距离,本文主要介绍了C++中std::distance使用方法示例,具... 目录语法使用方式解释示例输出:其他说明:总结std::distance&n编程bsp;是 C++ 标准

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

C++ 中的 if-constexpr语法和作用

《C++中的if-constexpr语法和作用》if-constexpr语法是C++17引入的新语法特性,也被称为常量if表达式或静态if(staticif),:本文主要介绍C++中的if-c... 目录1 if-constexpr 语法1.1 基本语法1.2 扩展说明1.2.1 条件表达式1.2.2 fa

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域