概率论 — 浅谈大数定律

2024-04-17 04:58
文章标签 浅谈 大数 定律 概率论

本文主要是介绍概率论 — 浅谈大数定律,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.随机变量收敛方式

1.依分布收敛

在这里插入图片描述只有分布函数序列收敛到一个分布函数时,才说是依分布收敛的,这一说明是必要的,因为分布函数序列可能收敛到一个函数,而这个函数不一定是一个分布函数。

2.依概率收敛(随机收敛)
一个随机变量序列(Xn)n>=1 依概率收敛到某一个随机变量 X ,指的是 Xn 和 X 之间存在一定差距的可能性将会随着n 的增大而趋向于零。

比如抛硬币,每次抛硬币,正反面概率都是1/2,
随着抛硬币的次数不断增加,取正反面的频率依概率收敛于1/2.

3.几乎处处收敛
4.依概率收敛和几乎必然收敛、依分布收敛的区别
这三种都属于bai随机变量收敛,具体总du结的区别只有收敛zhi强度和约束条件的区别,具体如下:

1、其收敛强弱不同。这三种概率收敛都属于收敛的性质,但是这三种收敛的强度不同,
依分布收敛最弱,几乎必然收敛最强。
划分为大小关系就是几乎必然收敛=>依概率收敛=>依分布收敛。2、约束条件的不同。几乎必然收敛的强度最强,几乎处处收敛,而依分布收敛强度最弱,
受到很多条件的约束,依概率收敛的约束条件较小。

2.大数定律

在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下重复试验多次,随机事件的频率近似于它的概率。偶然中包含着某种必然。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。

大数定律分为弱大数定律强大数定律

3.强大数定律和弱大数定律

强弱大数定律都是在说:随着样本数的增大,用样本的平均数来估计总体的平均数,是靠谱的。

(1) 强弱大数定律的前提条件一样:要求独立同分布的随机序列,要求其期望存在。

(2) 强弱大数定律的结论不同。弱大数定律比较早被证明出来,弱大数定律表示样本均值“依概率收敛”于总体均值;而强大数定律是比较晚被证明出来的,它证明了样本均值可以“以概率为1收敛”于总体均值。简单的来说,就是数学家先证明了弱大数定律,后来在没有改变前提的情况下把弱大数定律推进了一步,得到了更厉害的强大数定律。

(3) 弱大数定律和强大数定律的区别在于,前者是“依概率收敛(convergence in probability)”,后者是“几乎确定收敛(almost surely convergence)或以概率为1收敛、几乎处处收敛”。后者比前者强,满足后者的必定满足前者,而满足前者的未必满足后者。

这篇关于概率论 — 浅谈大数定律的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910841

相关文章

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

浅谈mysql的sql_mode可能会限制你的查询

《浅谈mysql的sql_mode可能会限制你的查询》本文主要介绍了浅谈mysql的sql_mode可能会限制你的查询,这个问题主要说明的是,我们写的sql查询语句违背了聚合函数groupby的规则... 目录场景:问题描述原因分析:解决方案:第一种:修改后,只有当前生效,若是mysql服务重启,就会失效;

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

uva 10069 DP + 大数加法

代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>#include <cl

浅谈PHP5中垃圾回收算法(Garbage Collection)的演化

前言 PHP是一门托管型语言,在PHP编程中程序员不需要手工处理内存资源的分配与释放(使用C编写PHP或Zend扩展除外),这就意味着PHP本身实现了垃圾回收机制(Garbage Collection)。现在如果去PHP官方网站(php.net)可以看到,目前PHP5的两个分支版本PHP5.2和PHP5.3是分别更新的,这是因为许多项目仍然使用5.2版本的PHP,而5.3版本对5.2并不是完

浅谈java向上转型和乡下转型

首先学习每一种知识都需要弄明白这知识是用来干什么使用的 简单理解:当对象被创建时,它可以被传递给这些方法中的任何一个,这意味着它依次被向上转型为每一个接口,由于java中这个设计接口的模式,使得这项工作不需要程序员付出任何特别的努力。 向上转型的作用:1、为了能够向上转型为多个基类型(由此而带来的灵活性) 2、使用接口的第二个原因却是与使用抽象基类相同,防止客户端创建该类的对象,并确保这仅仅

Java验证辛钦大数定理

本实验通过程序模拟采集大量的样本数据来验证辛钦大数定理。   实验环境: 本实验采用Java语言编程,开发环境为Eclipse,图像生成使用JFreeChart类。   一,验证辛钦大数定理 由辛钦大数定理描述为: 辛钦大数定理(弱大数定理)  设随机变量序列 X1, X2, … 相互独立,服从同一分布,具有数学期望E(Xi) = μ, i = 1, 2, …, 则对于任意正数ε ,

机械学习—零基础学习日志(概率论总笔记5)

引言——“黑天鹅” 要获得95%以上置信度的统计结果,需要被统计的对象出现上千次,但是如果整个样本只有几千字,被统计的对象能出现几次就不错了。这样得到的数据可能和真实的概率相差很远。怎么避免“黑天鹅”? 古德-图灵折扣估计法 在词语统计中,有点词语虽然是出现0次,但是实际的出现概率并不是永远不可能的零。 那需要把一些概率转移给到这些词语。 古德的做法实际上就是把出现1次的单词的总量,给了