【DA-CLIP】图像退化类型检测功能演示代码

2024-04-17 03:04

本文主要是介绍【DA-CLIP】图像退化类型检测功能演示代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

在CLIP基础上微调而来,使用图像控制器编码生成退化类型embedding并在训练中对图像编码器进行控制。针对十种退化类型进行了训练。

解决CLIP模型在图像纹理等层面无法针对退化类型识别或识别率较低的问题。

训练数据集情况

 GitHub有对应数据集连接

 

完整代码

项目没有提供退化类型识别准确率计算的代码。只提供了上面的雷达图对比。毕竟这只是复原处理的一小部分。

以下代码是缺少img复原处理的版本。这份代码是在app.py的基础上做了退化类型检测功能,并去掉图像复原处理过程。GitHub - Algolzw/daclip-uir: [ICLR 2024] Controlling Vision-Language Models for Universal Image Restoration. 5th place in the NTIRE 2024 Restore Any Image Model in the Wild Challenge.[ICLR 2024] Controlling Vision-Language Models for Universal Image Restoration. 5th place in the NTIRE 2024 Restore Any Image Model in the Wild Challenge. - Algolzw/daclip-uiricon-default.png?t=N7T8https://github.com/Algolzw/daclip-uir

下载项目、预训练模型权重、安装环境后将该份代码复制到app.py同一目录下运行即可 

 # 缺少img处理的版本
# 这份代码是在app的基础上做了daclip退化类型检测功能,并去掉图像复原处理过程
import os
import gradio as gr
import argparse
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode
import options as option
from models import create_model
import open_clipparser = argparse.ArgumentParser()
# ArgumentParser对象是argparse模块的核心,它提供了一个接口来添加参数(arguments)和选项(options)到你的程序
parser.add_argument("-opt", type=str, default='options/test.yml', help="Path to options YMAL file.")
# 添加一个命令行选项,这个选项被命名为-opt,它是一个接受字符串类型的参数
opt = option.parse(parser.parse_args().opt, is_train=False)
# 调用options.py中的parse方法,接受两个参数,args.opt是通过 argparse 解析器得到的选项值,采用刚刚定义的默认YMAL地址opt = option.dict_to_nonedict(opt)
# convert to NoneDict, which return None for missing key.
# load pretrained model by default
model = create_model(opt)
# 在models的init.py中的create_model()
device = model.device
# 根据配置决定CUDA还是CPUclip_model, preprocess = open_clip.create_model_from_pretrained('daclip_ViT-B-32', pretrained=opt['path']['daclip'])clip_model = clip_model.to(device)def clip_transform(np_image, resolution=224):# 这一行定义了一个名为clip_transform的函数,它接受两个参数:np_image(一个NumPy数组格式的图像)和resolution(一个可选参数,默认值为224,表示图像的目标分辨率)。pil_image = Image.fromarray((np_image * 255).astype(np.uint8))# 这一行将NumPy数组格式的图像转换为PIL(Python Imaging Library)图像。首先,将NumPy数组中的像素值乘以255,然后转换为无符号的8位整数格式,这是因为图像的像素值通常在0到255的范围内。return Compose([# 来自torchvision.transforms# 这一行开始定义一个转换流程,Compose是来自albumentations库的一个函数,用于组合多个图像转换操作。Resize(resolution, interpolation=InterpolationMode.BICUBIC),# 这一行使用Resize操作来调整图像大小到指定的分辨率。interpolation=InterpolationMode.BICUBIC指定了使用双三次插值方法来调整图像大小,这是一种高质量的插值算法。CenterCrop(resolution),# 这一行应用CenterCrop操作,将调整大小后的图像进行中心裁剪,以确保图像的尺寸严格等于指定的分辨率ToTensor(),# 这一行使用ToTensor操作将PIL图像转换为PyTorch张量。这是为了使图像能够被深度学习模型处理。Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))])(pil_image)# 这一行应用Normalize操作,对图像的每个通道进行标准化。它使用两组参数,分别对应图像的均值和标准差。这些参数通常是根据预训练模型的要求来设置的。# 然后,将转换流程应用到PIL图像上,并返回处理后的张量。examples = [os.path.join(os.path.dirname(__file__), f"images/{i}.jpg") for i in range(1, 11)]degradations = ["运动模糊", "有雾", "JPEG压缩伪影", "低光照", "噪声", "雨滴", "多雨的", "阴影遮挡的", "多雪的", "遮挡修复"
]
text_tokens = ['motion-blurry', 'hazy', 'jpeg-compressed', 'low-light', 'noisy', 'raindrop', 'rainy', 'shadowed','snowy', 'uncompleted']
text = open_clip.tokenize(text_tokens).to(device)def detect(image):image = image / 255.# 这一行将输入的图像张量的像素值归一化到0到1的范围内。img4clip = clip_transform(image).unsqueeze(0).to(device)if image is None:passelse:# 计算daclip识别结果with torch.no_grad(), torch.cuda.amp.autocast():image_features, degra_features = clip_model.encode_image(img4clip, control=True)# degra_features = clip_model.encode_image(img4clip, control=False)# control=True启动图像控制器,不设置只有clip图像编码器text_features = clip_model.encode_text(text)# normalized featuresdegra_features = degra_features / degra_features.norm(dim=1, keepdim=True)text_features = text_features / text_features.norm(dim=1, keepdim=True)# cosine similarity as logitslogit_scale = clip_model.logit_scale.exp()logits_per_image = logit_scale * degra_features @ text_features.t()# ...(省略之前的代码)probs = logits_per_image.softmax(dim=-1).cpu().numpy()degradation_probabilities = {degradation: round(prob, 3) for degradation, prob inzip(degradations, probs[0].flatten())}print(degradation_probabilities)# 返回恢复后的图像和输入的退化类型。return degradation_probabilitiesinterface = gr.Interface(fn=detect,  # 要调用的函数inputs=[gr.Image(label="输入图像")],outputs=gr.Label(label="退化类型概率"),title="DA-CLIP的图像退化识别" # 界面标题, examples=examples
)interface.launch()
# 修改为原图输出,只求退化类型

代码思路 

  • 设置命令行参数:通过argparse库设置命令行参数,用于指定配置文件的路径。
  • 加载预训练模型:根据提供的配置文件加载预训练的DA-CLIP模型。
  • 图像预处理:定义clip_transform函数,用于将NumPy数组格式的图像转换为适合模型输入的格式。
  • 定义退化类型列表:创建一个包含所有可能退化类型的列表。
  • 模型推理:在detect函数中,对输入图像进行必要的预处理,然后使用DA-CLIP模型进行推理,计算每个退化类型的概率。
  • 格式化输出:将模型输出的概率转换为字典格式,并选择概率最高的退化类型。
  • Gradio界面:使用Gradio库创建一个界面,用户可以通过它上传图像并获取退化类型的概率。

 图像编码模型处理过程:

【DA-CLIP】encode_image图像编码过程和IRSDE对image_context,、degra_context的使用-CSDN博客icon-default.png?t=N7T8https://blog.csdn.net/m0_60350022/article/details/137692282

 clip_model.encode_image也可设置control为False进行CLIP的分类演示测试。

  • 模型编码 (encode_imageencode_text方法): 经过预处理的图像被送入模型进行特征提取。在DA-CLIP模型中,encode_image方法用于从图像中提取视觉特征,而encode_text方法用于提取文本特征。这些特征向量是高维空间中的点,它们编码了输入数据的关键信息。

  • 特征归一化: 为了提高计算效率和模型性能,通常会对提取的特征进行归一化处理。在代码中,使用norm方法对图像特征和文本特征进行L2归一化,使得每个特征向量的长度为1。

  • 相似度计算 (logits_per_image计算): 模型使用特征向量来计算图像与每个退化类型之间的相似度。在DA-CLIP模型中,这通常是通过计算特征向量之间的点积(即内积)来实现的。logit_scale是一个可学习的参数,用于调整相似度得分的尺度。

  • 概率计算 (softmax函数): 得到相似度得分后,需要将它们转换成概率分布。softmax函数可以将任意实数值向量转换成概率分布,使得向量中所有元素的和为1。这样,每个得分就表示了图像属于某个特定退化类型的概率。

运行演示 

上传图像,展示退化类型识别结果百分比。后台提供三位小数计算结果

  • 比较难绷的是example计算全为近100% ,所以是十边形战士?没啥精力搞十个数据集测试,感兴趣的同学可以去了解一下
  • readme提供的LQ_image其实是训练集、测试集的一部分计算出来也全是100%

  • 合成噪声比较明显的话也很好识别
  • 可以改一个DACLIP和CLIP结果对比的,我就先不搞了,可以复制一份搞两个网页,不过很吃内存hh
  • 上面是DA-CLIP,下面修改了control是CLIP的计算结果

  •  SIDD智能手机图像去噪数据集的sRGB噪声图
  •  对于真实手机拍摄图像的识别效果还不是很好,这个计算是不是有点绝对了,,虽然低光照是一个很明显的问题
  • 可能这也导致不同数据集上测试这个模型效果不够好的原因,比如是想做去噪的但是复原模型却输入了低光照的退化嵌入

 CLIP有时候确实感觉在胡扯,比如下面这图识别成rainy..

 

  •  old photo数据集,没翻论文看经过了什么处理合成的LQ图像,直观看比较接近snowy也算合理

 

CLIP的结果 

 

这篇关于【DA-CLIP】图像退化类型检测功能演示代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910629

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景