Pytorch搭建GoogleNet神经网络

2024-04-17 02:28

本文主要是介绍Pytorch搭建GoogleNet神经网络,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、创建卷积模板文件

因为每次使用卷积层都需要调用Con2d和relu激活函数,每次都调用非常麻烦,就将他们打包在一起写成一个类。

in_channels:输入矩阵深度作为参数输入

out_channels: 输出矩阵深度作为参数输入

经过卷积层和relu激活函数之后通过正向传播得到输出。

class BasicConv2d(nn.Module):def __init__(self, in_chaannels, out_channels, **kwargs):super(BasicConv2d, self).__init__()self.conv = nn.Conv2d(in_chaannels, out_channels, **kwargs)self.conv = nn.ReLU(inplace=True)# 定义正向传播  def forward(self, x):x = self.conv(x)x = self.relu(x)return x

二、定义Inception结构 

 def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):

in_channels:输入特征矩阵的参数

ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj:表格中对应需要的参数。

branch1、2、3、4 分别对应inception结构中的四个分支,第一层只有一个分支,第二、三、四层都有1x1卷积核起到降维的作用。

所有定义的参数都来自于GoogleNet神经网络的参数表格。

详见GoogleNet神经网络介绍-CSDN博客

class Inception(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):super(Inception, self).__init__()self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)self.branch2 = nn.Sequential(BasicConv2d(in_channels, ch3x3red, kernel_size=1),BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # padding=1 保证输出大小等于输入大小)self.branch3 = nn.Sequential(BasicConv2d(in_channels, ch5x5red, kernel_size=1),BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2))self.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),BasicConv2d(in_channels, pool_proj, kernel_size=1))def forward(self, x):  # 将输出的特征矩阵分别输出到branch1234中branch1 = self.branch1(x)branch2 = self.branch2(x)branch3 = self.branch3(x)branch4 = self.branch4(x)# 将输出放入列表中outputs = [branch1, branch2, branch3, branch4]# 对四个输出特征矩阵在channel维度进行合并。“1”指需要合并的维度return torch.cat(outputs, 1)

三、辅助分类器

 def __init__(self, in_channels, num_classes):表示输入特征矩阵的个数和要分类的类别数。

辅助分类器1对应参数:N x 512 x 14 x 14 ,辅助分类器2对应参数:N x 528 x 14 x 14

在经过平均池化下采样后高度和宽度变成了4 x 4

辅助分类器1对应参数:N x 512 x 4 x 4 ,辅助分类器2对应参数:N x 528 x 4 x 4。

x = F.dropout(x, 0.5, training=self.training)

输入特征矩阵按照50%的比例随机失活。

training=self.training

当实例化一个模型model时,可以通过model.train() 和 model.eval()来控制模型的状态,在model.train()模式下,self.training=True, 在model.eval()模式下,self.training=False。

# 辅助分类器
class InceptionAux(nn.Module):def __init__(self, in_channels, num_classes):super(InceptionAux, self).__init__()self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)  # 平均池化下采样层self.conv = BasicConv2d(in_channels, 128, kernel_size=1)   # 1 x 1 的卷积层# 全连接层self.fc1 = nn.Linear(2048, 1024)self.fc2 = nn.Linear(1024, num_classes)# 定义正向传播def forward(self, x):# aux1:N x 512 x 14 x 14 aux2:N x 528 x 14 x 14x = self.averagePool(x)# aux1:N x 512 x 4 x 4   aux2:N x 528 x 4 x 4。x = self.conv(x)x = torch.flatten(x, 1)    # "1"表示按channel维度展平x = F.dropout(x, 0.5, training=self.training)x = self.fc2(x)return x

四、定义层结构

 def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):

num_classes:分类类别个数

aux_logits: 是否使用辅助分类器

init_weight: 是否为权重进行初始化

self.aux_logits = aux_logits:将变量传入变为类变量

conv1、conv2、conv3 都是使用之前定义的卷积模板文件来定义的。

inception结构使用定义的 Inception结构。

self.avgpool = nn.AdaptiveAvgPool2d((1, 1)):自适应平均池化下采样

括号里输入所需要的输出特征矩阵的高和宽。

使用自适应平均池化下采样的好处:无论输入特征矩阵的高和宽时一个什么样的大小,都能得到所指定的高和宽,这样就可以不用限定输入图像的尺寸了。

class GoogleNet(nn.Module):def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):super(GoogleNet, self).__init__()self.aux_logits = aux_logitsself.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.conv2 = BasicConv2d(64, 64, kernel_size=1)self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)self.maxpool4 = nn.MaxPool2d(2, stride=2, ceil_mode=True)self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)if self.aux_logits:  # 如果使用辅助分类器self.aux1 = InceptionAux(512, num_classes)   # 创建辅助分类器1self.aux2 = InceptionAux(528, num_classes)   # 创建辅助分类器2self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.dropout = nn.Dropout(0.4)  # 40%比例随机失活self.fc = nn.Linear(1024, num_classes)if init_weights:self._initialize_weights()  # 如果需要初始化,将会进入模型权重初始化函数

定义正向传播 

将整个层结构输出出来。

if self.training and self.aux_logits:
            aux2 = self.aux2(x)

判断模型是处于训练模式还是验证模式?并判断是否要使用辅助分类器。

    def forward(self, x):x = self.conv1(x)x = self.maxpool1(x)x = self.conv2(x)x = self.conv3(x)x = self.maxpool2(x)x = self.inception3a(x)x = self.inception3b(x)x = self.maxpool3(x)x = self.inception4a(x)if self.training and self.aux_logits:aux1 = self.aux1(x)x = self.inception4a(x)x = self.inception4b(x)x = self.inception4c(x)x = self.inception4d(x)if self.training and self.aux_logits:aux2 = self.aux2(x)x = self.inception4e(x)x = self.maxpool4(x)x = self.inception5a(x)x = self.inception5b(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.dropout(x)x = self.fc(x)if self.training and self.aux_logits:  # 如果处于训练模式并使用了辅助分类器return x, aux2, aux1  # 将返回 主分类器、辅助分类器2、辅助分类器1 这样3个参数return x  # 否则只返回主分类器这一个函数

初始化权重函数

    def _initialize_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):  # 卷积层nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')if m.bias is not None:nn.init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):  # 全连接层nn.init.normal_(m.weight, 0, 0.01)nn.init.constant_(m.bias, 0)

五、训练模型 

没有报错,训练成功。

这篇关于Pytorch搭建GoogleNet神经网络的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910548

相关文章

本地搭建DeepSeek-R1、WebUI的完整过程及访问

《本地搭建DeepSeek-R1、WebUI的完整过程及访问》:本文主要介绍本地搭建DeepSeek-R1、WebUI的完整过程及访问的相关资料,DeepSeek-R1是一个开源的人工智能平台,主... 目录背景       搭建准备基础概念搭建过程访问对话测试总结背景       最近几年,人工智能技术

5分钟获取deepseek api并搭建简易问答应用

《5分钟获取deepseekapi并搭建简易问答应用》本文主要介绍了5分钟获取deepseekapi并搭建简易问答应用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需... 目录1、获取api2、获取base_url和chat_model3、配置模型参数方法一:终端中临时将加

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Mycat搭建分库分表方式

《Mycat搭建分库分表方式》文章介绍了如何使用分库分表架构来解决单表数据量过大带来的性能和存储容量限制的问题,通过在一对主从复制节点上配置数据源,并使用分片算法将数据分配到不同的数据库表中,可以有效... 目录分库分表解决的问题分库分表架构添加数据验证结果 总结分库分表解决的问题单表数据量过大带来的性能

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

鸿蒙开发搭建flutter适配的开发环境

《鸿蒙开发搭建flutter适配的开发环境》文章详细介绍了在Windows系统上如何创建和运行鸿蒙Flutter项目,包括使用flutterdoctor检测环境、创建项目、编译HAP包以及在真机上运... 目录环境搭建创建运行项目打包项目总结环境搭建1.安装 DevEco Studio NEXT IDE

搭建Kafka+zookeeper集群调度

前言 硬件环境 172.18.0.5        kafkazk1        Kafka+zookeeper                Kafka Broker集群 172.18.0.6        kafkazk2        Kafka+zookeeper                Kafka Broker集群 172.18.0.7        kafkazk3

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联