[阅读笔记1][GPT-3]Language Models are Few-Shot Learners

2024-04-16 10:04

本文主要是介绍[阅读笔记1][GPT-3]Language Models are Few-Shot Learners,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先讲一下GPT3这篇论文,文章标题是语言模型是小样本学习者,openai于2020年发表的。

这篇是在GPT2的基础上写的,由于GPT2还存在一些局限,这篇对之前的GPT2进行了一些完善。GPT2提出了多任务学习,也就是可以零样本地用在各个下游任务,不需要再进行微调了,这与Bert的思路差别很大。但是GPT2的结果没有特别出色,只是比部分有监督的模型高了一点,大概处在一个平均水平。
GPT3仍然沿用了2的思路,然后将模型扩大了一百倍,模型具有1750亿个参数。另外在处理任务时提供了少量带标签的样本供模型学习,不过这里并没有用这些样本微调模型,仅仅是作为prompt输入给模型。可以看到大模型和few-shot带来的提升都是巨大的。

以Bert为代表的预训练-微调范式存在一些问题,首先就是数据集,对于每个细分任务都需要带标注的数据集来微调,这个代价是很大的。第二点就是泛化性不好,因为只能应用于微调的那些任务。第三点是和人类进行类比,比如情感分析,人类不需要看完整个数据集,只需要看少量的几个例子就能学会。所以few-shot相比微调更符合人类行为。

接下来就是展示了一下GPT3使用的zero-shot、one-shot、few-shot与微调的区别。
左侧是微调的过程,右侧就是gpt3提出的方法,不需要进行梯度更新。

模型结构使用的类似GPT2,有一些改进,比如使用了稀疏transformer,类似于空洞卷积,这样模型能尽可能轻量一些。但即使这样,整个模型还是非常大的。

最后是模型的结果,左边的图可以看到模型越大损失越小,并且要想损失线性的下降需要模型规模指数级增大。右边的图是在lambada数据集上的结果,这里one-shot不如zero-shot结果,作者给出的解释是只给一个示例的话,模型还没有充分学习到这种交互方式,可能认为给的不是一个任务示例,而是一句普通的文本,从而干扰了正常的推理。

这篇关于[阅读笔记1][GPT-3]Language Models are Few-Shot Learners的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908486

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓