[Rscript]逻辑回归识别学生群体的R实现

2024-04-16 09:08

本文主要是介绍[Rscript]逻辑回归识别学生群体的R实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

library(ggplot2)
library(pROC)###读取数据并查看数据情况
setwd("D:\\student_recognition")
student<-read.csv("student.csv")
str(student) #查看变量
apply(student,2,function(x){mean(x=='NULL'|x=="")
})  #查看缺失值情况###数据预处理
#略###描述性分析
#绘制箱线图,可见https://blog.csdn.net/TOMOCAT/article/details/80559006
#分组查看变量
library(plyr) #可进行类似数据透视表的操作,将数据分割成更小的数据,对分割后的数据进行操作
ddply(student[,c("is_student","student_app")],c("is_student"),summarise,mean_app=mean(student_app))
##   whether_student  mean_app
## 1               0 0.1745353
## 2               1 0.4435253###逻辑回归建模
model_student<-student[,c("is_student",cont_var,class_var)]
#这里cont_var是经过数据清洗和预处理之后的用于建模的连续变量,class_var是分类变量
#计算建模的平均auc
auc<-NULL
for(i in 1:5){ind<-sample(1:dim(model_student)[1],round(dim(model_student)[1]*0.3)) #对数据集按照记录数划分成训练集和测试集train<-model_student[-ind,]test<-model_student[ind,]for (var in cont_var){train[,var]<-(train[,var]-mean(train[,var]))/sd(train[,var])test[,var]<-(test[,var]-mean(test[,var]))/sd(test[,var])} #连续变量标准化for (var in class_var){train[,var]<-as.factor(train[,var])test[,var]<-as.factor(test[,var])} #离散变量转化为因子型lm_res<-glm(is_student~.,data=train,family="binomial")pre<-predict(lm_res,test,type="reponse")auc0<-auc(test$is_student,pre)print(auc0)auc=c(auc,auc0)
}
mean(auc) #相当于五次留出法的平均auc值
#从所有变量建模到用逐步回归筛选变量
lm_res_all<-glm(is_student~.,data=model_student,family="binomial")
step_lm<-step(lm_res_all) #逐步回归筛选变量
#绘制逻辑回归变量系数大小图
coef = as.data.frame(step_lm$coefficients)
coef$var = row.names(coef)
colnames(coef)[1] = "coef"
coef = coef[-1,]
coef$pos = coef$coef>0
ggplot(coef,aes(x = reorder(var,-coef),y = coef,fill = pos))+geom_bar(stat = 'identity',position = 'identity')+scale_x_discrete(labels = c("有无学生类APP","score","学校线路占比","总出行次数","平均出行距离","出行时段-早高峰","工作日出行时间标准差","出行时段-平峰","周末出行次数","周末出行时间标准差","工作日出行时段-平峰","周末出行时段-平峰","工作日出行时段-早高峰","学校线路出行次数","周末出行时段-早高峰","工作日出行时段-无","工作日平均出行距离","周末平均出行距离","出行时间标准差","工作日出行次数","周末出行时段-无"))+theme(axis.text.x = element_text(angle = 50,hjust = 1,vjust = 1))+labs(fill = "系数正负",x = "变量",y="系数")
#可视化结果参照我的R可视化相关博文

 

这篇关于[Rscript]逻辑回归识别学生群体的R实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908361

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、