DAY13|239. 滑动窗口最大值、347.前K个高频元素

2024-04-16 07:52

本文主要是介绍DAY13|239. 滑动窗口最大值、347.前K个高频元素,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

239. 滑动窗口最大值、347.前 K 个高频元素

  • 239. 滑动窗口最大值
  • 347.前 K 个高频元素

239. 滑动窗口最大值

难度有些大啊…
其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的。

那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列

不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢。

在这里插入图片描述
对于窗口里的元素{2, 3, 5, 1 ,4},单调队列里只维护{5, 4} 就够了,保持单调队列里单调递减,此时队列出口元素就是窗口里最大元素。

此时大家应该怀疑单调队列里维护着{5, 4} 怎么配合窗口进行滑动呢?

设计单调队列的时候,pop,和push操作要保持如下规则:

pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值。

为了更直观的感受到单调队列的工作过程,以题目示例为例,输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3,动画如下:

class Solution {
private:class MyQueue { //单调队列(从大到小)public:deque<int> que; // 使用deque来实现单调队列// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。// 同时pop之前判断队列当前是否为空。void pop(int value) {if (!que.empty() && value == que.front()) {que.pop_front();}}// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。// 这样就保持了队列里的数值是单调从大到小的了。void push(int value) {while (!que.empty() && value > que.back()) {que.pop_back();}que.push_back(value);}// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。int front() {return que.front();}};
public:vector<int> maxSlidingWindow(vector<int>& nums, int k) {MyQueue que;vector<int> result;for (int i = 0; i < k; i++) { // 先将前k的元素放进队列que.push(nums[i]);}result.push_back(que.front()); // result 记录前k的元素的最大值for (int i = k; i < nums.size(); i++) {que.pop(nums[i - k]); // 滑动窗口移除最前面元素que.push(nums[i]); // 滑动窗口前加入最后面的元素result.push_back(que.front()); // 记录对应的最大值}return result;}
};

347.前 K 个高频元素

虽然这些数据结构都学过,但看着还是比较云…

这道题目主要涉及到如下三块内容:

要统计元素出现频率
对频率排序
找出前K个高频元素
首先统计元素出现的频率,这一类的问题可以使用map来进行统计。

然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列。

什么是优先级队列呢?

其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。

而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?

缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)。

什么是堆呢?

堆是一棵完全二叉树,树中每个结点的值都不小于(或不大于)其左右孩子的值。 如果父亲结点是大于等于左右孩子就是大顶堆,小于等于左右孩子就是小顶堆。

所以大家经常说的大顶堆(堆头是最大元素),小顶堆(堆头是最小元素),如果懒得自己实现的话,就直接用priority_queue(优先级队列)就可以了,底层实现都是一样的,从小到大排就是小顶堆,从大到小排就是大顶堆。

本题我们就要使用优先级队列来对部分频率进行排序。

为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的。

此时要思考一下,是使用小顶堆呢,还是大顶堆?

有的同学一想,题目要求前 K 个高频元素,那么果断用大顶堆啊。

那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢。

而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?

所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。

寻找前k个最大元素流程如图所示:(图中的频率只有三个,所以正好构成一个大小为3的小顶堆,如果频率更多一些,则用这个小顶堆进行扫描)

在这里插入图片描述

class Solution {
public:// 小顶堆class mycomparison {public:bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {return lhs.second > rhs.second;}};vector<int> topKFrequent(vector<int>& nums, int k) {// 要统计元素出现频率unordered_map<int, int> map; // map<nums[i],对应出现的次数>for (int i = 0; i < nums.size(); i++) {map[nums[i]]++;}// 对频率排序// 定义一个小顶堆,大小为kpriority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;// 用固定大小为k的小顶堆,扫面所有频率的数值for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {pri_que.push(*it);if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为kpri_que.pop();}}// 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组vector<int> result(k);for (int i = k - 1; i >= 0; i--) {result[i] = pri_que.top().first;pri_que.pop();}return result;}
};

这篇关于DAY13|239. 滑动窗口最大值、347.前K个高频元素的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908203

相关文章

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

bat脚本启动git bash窗口,并执行命令方式

《bat脚本启动gitbash窗口,并执行命令方式》本文介绍了如何在Windows服务器上使用cmd启动jar包时出现乱码的问题,并提供了解决方法——使用GitBash窗口启动并设置编码,通过编写s... 目录一、简介二、使用说明2.1 start.BAT脚本2.2 参数说明2.3 效果总结一、简介某些情

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

遮罩,在指定元素上进行遮罩

废话不多说,直接上代码: ps:依赖 jquer.js 1.首先,定义一个 Overlay.js  代码如下: /*遮罩 Overlay js 对象*/function Overlay(options){//{targetId:'',viewHtml:'',viewWidth:'',viewHeight:''}try{this.state=false;//遮罩状态 true 激活,f

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(

学习记录:js算法(二十八):删除排序链表中的重复元素、删除排序链表中的重复元素II

文章目录 删除排序链表中的重复元素我的思路解法一:循环解法二:递归 网上思路 删除排序链表中的重复元素 II我的思路网上思路 总结 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 图一 图二 示例 1:(图一)输入:head = [1,1,2]输出:[1,2]示例 2:(图

JS和jQuery获取节点的兄弟,父级,子级元素

原文转自http://blog.csdn.net/duanshuyong/article/details/7562423 先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作对比。 JS的方法会比JQUERY麻烦很多,主要则是因为FF浏览器,FF浏览器会把你的换行也当最DOM元素。 <div id="test"><div></div><div></div

专题二_滑动窗口_算法专题详细总结

目录 滑动窗口,引入: 滑动窗口,本质:就是同向双指针; 1.⻓度最⼩的⼦数组(medium) 1.解析:给我们一个数组nums,要我们找出最小子数组的和==target,首先想到的就是暴力解法 1)暴力: 2)优化,滑动窗口: 1.进窗口 2.出窗口 3.更新值 2.⽆重复字符的最⻓⼦串(medium) 1)仍然是暴力解法: 2)优化: 进窗口:hash[s[rig

力扣第347题 前K个高频元素

前言 记录一下刷题历程 力扣第347题 前K个高频元素 前K个高频元素 原题目: 分析 我们首先使用哈希表来统计数字出现的频率,然后我们使用一个桶排序。我们首先定义一个长度为n+1的数组,对于下图这个示例就是长度为7的数组。为什么需要一个长度为n+1的数组呢?假如说总共有三个数字都为1,那么我们需要把这个1放在数组下标为3的位置,假如说数组长度为n,对于这个例子就是长度为3,那么它的

QML入门之基本元素

元素分为可视元素与非可视元素,可能元素例如Rectangle、Button等。非可视元素如Timer(定时器)、MouseArea(鼠标区域)等。非可视元素一般用于操作可视元素。 基础元素 Item Item(基础元素对象)是所有可视元素的基础对象,它们都继承自Item。可是元素存在以下共有属性。 Group(分组)Properties(属性)Geometry(几何属性)x