基于Redis有序集合实现滑动窗口限流的步骤

2024-12-31 15:50

本文主要是介绍基于Redis有序集合实现滑动窗口限流的步骤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis...

滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间段内的请求次数。通过动态地滑动窗口,可以动态调整限流的速率,以应对不同的流量变化。

整个限流可以概括为两个主要步骤:

  • 统计窗口内的请求数量
  • 应用限流规则

Redis有序集合每个value有一个score(分数),基于score我们可以定义一个时间窗口,然后每次一个请求进来就设置一个value,这样就可以统计窗口内的请求数量。key可以是资源名,比如一个url,或者ip+url,用户标识+url等。value在这里不那么重要,因为我们只需要统计数量,因此value可以就设置成时间戳,但是如果value相同的话就会被覆盖,所以我们可以把请求的数据做一个hash,将这个hash值当value,或者如果每个请求有流水号的话,可以用请求流水号当value,总之就是要能唯一标识一次请求的。

所以,简化后的命令就变成了:

ZADD  资源标识   时间戳   请求标识

public boolean isAllow(String key) {
    ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
    //  获取当前时间戳
    long currentTime = System.currentTimeMillis();
    //  当前时间 - 窗口大小 = 窗口开始时间
    long Windowstart = currentTime - period;
    //  删除窗口开始时间之前的所有数据
    zSetOperations.removeRangeByScore(key, 0, windowStart);
    //  统计窗口中请求数量
    Long count = zSetOperations.zCard(key);
    //  如果窗口中已经请求的数量超过阈值,则直接拒绝
    if (count >= threshold) {
        return false;
    }
    //  没有超过阈值,则加入集合
    String value = "请求唯一标识(比如:请求流水号、哈希值、MD5值等)";
    zSetOperations.add(key, String.valueOf(currentTime), currentTime);
    //  设置一个过期时间,及时清理冷数据
    stringRedisTemplate.expire(key, period, TimeUnit.MILLISECONDS);
    //  通过
    return true;
}

上面代码中涉及到三条Redis命令,并发请求下可能存在问题,所以我们把它们写成Lua脚本

local key = KEYS[1]
local current_time = tonumber(ARGV[1])
local window_size = tonumber(ARGV[2])
local threshold = tonumber(ARGV[3])
redis.call('ZREMRANGEBYSCORE', key, 0, current_time - window_size)
local count = redis.call('ZCARD', key)
if count >= threshold then
    return tostring(0)
else
    redis.call('ZADD', key, tostring(current_time), current_time)
    return tostring(1)
end

完整的代码如下:

package com.example.demo.controller;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.sjavascriptpringframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.stereotype.Service;
import Java.util.Collections;
import java.util.concurrent.TimeUnit;
/**
 * 基于Redis有序集合实现滑动窗口限流
 * @Author: ChengJianSheng
 * @Date: 2024/12/26
 */
@Service
public class SlidingWindowRatelimiter {
    private long period = 60*1000;  //  1分钟
    private int threshold = 3;      //  3次
    @Autowired
    private StringRedisTemplate stringRedisTemplate;
    /**
     * RedisTemplate
     */
    public boolean isAllow(String key) {
        ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
        //  获取当前时间戳
        long currentTime = System.currentTimeMillis();
        //  当前时间 - 窗口大小 = 窗口开始时间
        long windowStart = currentTime - period;
        //  删除窗口开始时间之前的所有数据
        zSetOperations.removeRangeByScore(key, 0, windowStart);
        //  统计窗口中请求数量
        Long count = zSetOperations.zCard(key);
        //  如果窗口中已经请求的数量超过阈值,则直接拒绝
        if (count >= threshold) {
            return false;
        }
        //  没有超过阈值,则加入集合
        String value = "请求唯一标识(比如:请求流水号、哈希值、MD5值等)";
        zSetOperations.add(key, String.valueOf(currentTime), currentTime);
        //  设置一个过期时间,及时清理冷数据
        stringRedisTemplate.expire(key, period, TimeUnit.MILLISECONDS);
        //  通过
        return true;
    }
    /**
     * Lua脚本
     */
    public boolean isAllow2(String key) {
        String luaScript = "local key = KEYS[1]\n" +
                "local current_time = tonumberwww.chinasem.cn(ARGV[1])\n" +
                "local window_size = tonumber(ARGV[2])\n" +
                "local threshold = tonumber(ARGV[3])\n" +
                "redis.call('ZREMRANGEBYSCORE', key, 0, current_time - window_size)\n" +
                "local count = redis.call('ZCARD', key)\n" +
                "if count >= threshold then\n" +
                "    return tostring(0)\n" +
                "else\n" +
                "    redis.call('ZADD', key, tostring(current_time), current_time)\n" +
                "    return tostring(1)\n" +
                "end";
        long currentTime = System.currentTimeMillis();
        DefaultRedisScript<String> redisScript = new DefaultRedisScript<>(luaScript, String.class);
        String result = stringRedisTemplate.execute(redisScrphpipt, Collections.singletonList(key), String.valueOf(currentTime), String.valueOf(period), String.valueOf(threshold));
        //  返回1表示通过,返回0表示拒绝
        return "1".equals(result);
    }
}

这里用StringRedisTemplate执行Lua脚本,先把Lua脚本封装成DefaultRedisScript对象。注意,千万注意,Lua脚本的返回值必须是字符串,参数也最好都是字符串,用整型的话可能类型转换错误。

String requestId = UUID.randomUUID().toString();
DefaultRedisScript<String> redisScript = new DefaultRedisScript<>(luaScript, String.class);
String result = stringRedisTemplate.execute(redisScript,
        Collections.singletonList(key),
        requestId,
        String.valueOf(period),
        String.valueOf(threshold));

好了,上面就是基于Redis有序集合实现的滑动窗口限流。顺带提一句,Redis List类型也可以用来实现滑动窗口。

接下来,我们来完善一下上面的代码,通过AOP来拦截请求达到限流的目的

为此,我们必须自定义注解,然后根据注解参数,来个性化的控制限流。那么,问题来了,如果获取注解参数呢?

举例说明:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface MyAnnjsotation {
    String value();
}
@ASPect
@Component
public class MyAspect {
    @Before("@annotation(myAnnotation)")
    public void beforeMethod(JoinPoint joinPoint, MyAnnotation myAnnotation) {
        // 获取注解参数
        String value = myAnnotation.value();
        System.out.println("Annotation value: " + value);
        // 其他业务逻辑...
    }
}

注意看,切点是怎么写的 @Before("@annotation(myAnnotation)")

是@Before("@annotation(myAnnotation)"),而不是@Before("@annotation(MyAnnotation)")

myAnnotation,是参数,而MyAnnotation则是注解类

基于Redis有序集合实现滑动窗口限流的步骤

此处参考资料

https://www.cnblogs.com/javaxubo/p/16556924.html

https://blog.csdn.net/qq_40977118/article/details/119488358

https://blog.51cto.com/knifeedge/5529885

言归正传,我们首先定义一个注解

package com.example.demo.controller;
import java.lang.annotation.*;
/**
 * 请求速率限制
 * @Author: ChengJianSheng
 * @Date: 2024/12/26
 */
@Documented
@Target(ElementType.METHOD)
@Retention(RetentionPolicy.RUNTIME)
public @interface RateLimit {
    /**
     * 窗口大小(默认:60秒)
     */
    long period() default 60;
    /**
     * 阈值(默认:3次)
     */
    long threshold() default 3;
}

定义切面

package com.example.demo.controller;
import jakarta.servlet.http.HttpServletRejavascriptquest;
import lombok.extern.slf4j.Slf4j;
import org.aspectj.lang.JoinPoint;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.ZSetOperations;
import org.springframework.stereotype.Component;
import org.springframework.web.context.request.RequestContextHolder;
import org.springframework.web.context.request.ServletRequestAttributes;
import org.springframework.web.servlet.support.RequestContextUtils;
import java.util.concurrent.TimeUnit;
/**
 * @Author: ChengJianSheng
 * @Date: 2024/12/26
 */
@Slf4j
@Aspect
@Component
public class RateLimitAspect {
    @Autowired
    private StringRedisTemplate stringRedisTemplate;
//    @Autowired
//    private SlidingWindowRatelimiter slidingWindowRatelimiter;
    @Before("@annotation(rateLimit)")
    public void doBefore(JoinPoint joinPoint, RateLimit rateLimit) {
        //  获取注解参数
        long period = rateLimit.period();
        long threshold = rateLimit.threshold();
        //  获取请求信息
        ServletRequestAttributes servletRequestAttributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
        HttpServletRequest httpServletRequest = servletRequestAttributes.getRequest();
        String uri = httpServletRequest.getRequestURI();
        Long userId = 123L;     //  模拟获取用户ID
        String key = "limit:" + userId + ":" + uri;
        /*
        if (!slidingWindowRatelimiter.isAllow2(key)) {
            log.warn("请求超过速率限制!userId={}, uri={}", userId, uri);
            throw new RuntimeException("请求过于频繁!");
        }*/
        ZSetOperations<String, String> zSetOperations = stringRedisTemplate.opsForZSet();
        //  获取当前时间戳
        long currentTime = System.currentTimeMillis();
        //  当前时间 - 窗口大小 = 窗口开始时间
        long windowStart = currentTime - period * 1000;
        //  删除窗口开始时间之前的所有数据
        zSetOperations.removeRangeByScore(key, 0, windowStart);
        //  统计窗口中请求数量
        Long count = zSetOperations.zCard(key);
        //  如果窗口中已经请求的数量超过阈值,则直接拒绝
        if (count < threshold) {
            //  没有超过阈值,则加入集合
            zSetOperations.add(key, String.valueOf(currentTime), currentTime);
            //  设置一个过期时间,及时清理冷数据
            stringRedisTemplate.expire(key, period, TimeUnit.SECONDS);
        } else {
            throw new RuntimeException("请求过于频繁!");
        }
    }
}

加注解

@RestController
@RequestMapping("/hello")
public class HelloController {
    @RateLimit(period = 30, threshold = 2)
    @GetMapping("/sayHi")
    public void sayHi() {
    }
}

最后,看Redis中的数据结构

基于Redis有序集合实现滑动窗口限流的步骤

最后的最后,流量控制建议看看阿里巴巴 Sentinel

https://sentinelguard.io/zh-cn/

到此这篇关于基于Redis有序集合实现滑动窗口限流的文章就介绍到这了,更多相关基于Redis有序集合实现滑动窗口限流内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于基于Redis有序集合实现滑动窗口限流的步骤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1152869

相关文章

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

Django中使用SMTP实现邮件发送功能

《Django中使用SMTP实现邮件发送功能》在Django中使用SMTP发送邮件是一个常见的需求,通常用于发送用户注册确认邮件、密码重置邮件等,下面我们来看看如何在Django中配置S... 目录1. 配置 Django 项目以使用 SMTP2. 创建 Django 应用3. 添加应用到项目设置4. 创建

java poi实现Excel多级表头导出方式(多级表头,复杂表头)

《javapoi实现Excel多级表头导出方式(多级表头,复杂表头)》文章介绍了使用javapoi库实现Excel多级表头导出的方法,通过主代码、合并单元格、设置表头单元格宽度、填充数据、web下载... 目录Java poi实现Excel多级表头导出(多级表头,复杂表头)上代码1.主代码2.合并单元格3.

Python读取TIF文件的两种方法实现

《Python读取TIF文件的两种方法实现》本文主要介绍了Python读取TIF文件的两种方法实现,包括使用tifffile库和Pillow库逐帧读取TIFF文件,具有一定的参考价值,感兴趣的可以了解... 目录方法 1:使用 tifffile 逐帧读取安装 tifffile:逐帧读取代码:方法 2:使用

Spring Boot实现多数据源连接和切换的解决方案

《SpringBoot实现多数据源连接和切换的解决方案》文章介绍了在SpringBoot中实现多数据源连接和切换的几种方案,并详细描述了一个使用AbstractRoutingDataSource的实... 目录前言一、多数据源配置与切换方案二、实现步骤总结前言在 Spring Boot 中实现多数据源连接

bat脚本启动git bash窗口,并执行命令方式

《bat脚本启动gitbash窗口,并执行命令方式》本文介绍了如何在Windows服务器上使用cmd启动jar包时出现乱码的问题,并提供了解决方法——使用GitBash窗口启动并设置编码,通过编写s... 目录一、简介二、使用说明2.1 start.BAT脚本2.2 参数说明2.3 效果总结一、简介某些情

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

使用 Python 和 LabelMe 实现图片验证码的自动标注功能

《使用Python和LabelMe实现图片验证码的自动标注功能》文章介绍了如何使用Python和LabelMe自动标注图片验证码,主要步骤包括图像预处理、OCR识别和生成标注文件,通过结合Pa... 目录使用 python 和 LabelMe 实现图片验证码的自动标注环境准备必备工具安装依赖实现自动标注核心

使用Python实现生命之轮Wheel of life效果

《使用Python实现生命之轮Wheeloflife效果》生命之轮Wheeloflife这一概念最初由SuccessMotivation®Institute,Inc.的创始人PaulJ.Meyer... 最近看一个生命之轮的视频,让我们珍惜时间,因为一生是有限的。使用python创建生命倒计时图表,珍惜时间