Python统计模型线性推理事件前因后果

2024-04-16 07:04

本文主要是介绍Python统计模型线性推理事件前因后果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 经典统计方法:🖊 A/B测试,计算两个均值样本的置信区间,🖊最小二乘法计算变量估值,🖊使用非线性关系式表示线性回归。🖊实例:高等教育和数学高分的事件的关联性。

🍇Python线性回归示例

在统计学中,简单线性回归是具有单个解释变量的线性回归模型。 在简单线性回归中,我们根据一个变量的结果来预测另一个变量的分数。 标准变量 Y 是我们预测的变量。 预测变量 X 是我们用来进行预测的变量。 这种预测方法被称为简单回归,因为只有一个预测变量,结果,对于具有一个自变量和一个因变量的二维样本点,发现了一种线性函数,该线性函数将因变量的值预测为自变量的函数。
y = m x + c y=m x+c y=mx+c
这是简单的线性回归方程,其中 c 是常数,m 是斜率,描述了 x(自变量)和 y(因变量)之间的关系。 该系数可以是正值,也可以是负值,是自变量每变化 1 个单位,因变量的变化程度。
Y i = β 0 + β 1 X i Y_i=\beta_0+\beta_1 X_i Yi=β0+β1Xi
β 0 \beta 0 β0(y 截距)和 β 1 \beta 1 β1(斜率)是系数,其值代表预测值与实际值的准确性。

我们需要 Pandas 进行数据操作,NumPy 进行数学计算,MatplotLib 和 Seaborn 进行可视化。 Sklearn 库用于机器学习操作。

# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from pandas.core.common import random_state
from sklearn.linear_model import LinearRegression

从此处下载数据集并将其上传到您的笔记本并将其读入 pandas 数据框。

# Get dataset
df_sal = pd.read_csv('/content/Sal_Data.csv')
df_sal.head()

现在我们已经准备好了数据,让我们详细分析和了解它的趋势。为此,我们可以首先描述以下数据 -

# Describe data
df_sal.describe()

我们还可以使用 Seaborn distplot 直观地了解数据的分布情况

# Data distribution
plt.title('Sal Distribution Plot')
sns.distplot(df_sal['Sal'])
plt.show()

distplot 或分布图显示数据分布的变化。 它通过将线条与直方图相结合来表示数据。然后我们检查数据间的关系 -

# Relationship between Salary and Experience
plt.scatter(df_sal['YearsExp'], df_sal['Sal'], color = 'lightcoral')
plt.title('Sal vs Exp')
plt.xlabel('Years of Exp')
plt.ylabel('Sal')
plt.box(False)
plt.show()

将数据集拆分为因变量/自变量

# Splitting variables
X = df_sal.iloc[:, :1]  # independent
y = df_sal.iloc[:, 1:]  # dependent

将数据拆分为训练/测试集

# Splitting dataset into test/train
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

训练回归模型

# Regressor model
regressor = LinearRegression()
regressor.fit(X_train, y_train)

预测结果

# Prediction result
y_pred_test = regressor.predict(X_test)     # predicted value of y_test
y_pred_train = regressor.predict(X_train)   # predicted value of y_train

绘制训练和测试结果

# Prediction on training set
plt.scatter(X_train, y_train, color = 'lightcoral')
plt.plot(X_train, y_pred_train, color = 'firebrick')
plt.title('Sal vs Exp (Training Set)')
plt.xlabel('Years of Exp')
plt.ylabel('Sal')
plt.legend(['X_train/Pred(y_test)', 'X_train/y_train'], title = 'Sal/Exp', loc='best', facecolor='white')
plt.box(False)
plt.show()

参阅:亚图跨际

这篇关于Python统计模型线性推理事件前因后果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908101

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及