[pytorch基础操作] 矩阵batch乘法大全(dot,* 和 mm,bmm,@,matmul)

2024-04-16 03:44

本文主要是介绍[pytorch基础操作] 矩阵batch乘法大全(dot,* 和 mm,bmm,@,matmul),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 逐元素相乘
    • torch.dot
    • *
  • 矩阵乘法
    • torch.mm
    • torch.bmm
    • @ 和 torch.matmul

逐元素相乘

逐元素相乘是指对应位置上的元素相乘,要求张量的形状相同

torch.dot

按位相乘torch.dot:计算两个张量的点积(内积),只支持1D张量(向量),不支持broadcast。

import torch# 创建两个向量
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 计算点积
result = torch.dot(a, b)
print(result)  # 输出: tensor(32)

*

*: 逐元素相乘,适用于任何维度的张量,要求张量的形状相同。

import torch# 创建两个张量
a = torch.randn(2, 3, 4)
b = torch.randn(2, 3, 4)# 逐元素相乘
result = a * b
print(result.shape)

矩阵乘法

矩阵乘法,执行矩阵乘法,前行乘后列,要求第一个矩阵的列数(tensor1.shape[-1])第二个矩阵的行数(tensor2.shape[-2])相等。如shape=(n,r)乘shape=(r,m)

torch.mm

torch.mm: 执行两个矩阵的乘法,适用于2D张量(矩阵)(h,w)/(seq_len,dim),不支持broadcast。

import torch# 创建两个矩阵
a = torch.rand(2,3)
b = torch.rand(3,2)# 计算矩阵乘法
result = torch.mm(a, b)
print(result.shape)  # [2,2]

torch.bmm

torch.bmm: 执行两个批次矩阵的乘法,适用于3D张量(b,h,w)/(b,seq_len,dim),不支持broadcast。

import torch# 创建两个批次矩阵
batch1 = torch.randn(10, 3, 4)  # 10个3x4的矩阵
batch2 = torch.randn(10, 4, 5)  # 10个4x5的矩阵# 计算批次矩阵乘法
result = torch.bmm(batch1, batch2)
print(result.shape)  # [10, 3, 5]

@ 和 torch.matmul

@torch.matmul: 两者完全等价,执行任意维度两个张量的矩阵乘法,支持张量的broadcast广播规则。

import torch# 创建两个张量
a = torch.randn(2, 8, 128, 64)
b = torch.randn(2, 8, 64, 128)# 使用 @ 运算符进行矩阵乘法
result = a @ b
print(result.shape)  # [2, 8, 128, 128]# 使用 torch.matmul 进行矩阵乘法
result = torch.matmul(a, b)
print(result.shape)  # [2, 8, 128, 128]

这篇关于[pytorch基础操作] 矩阵batch乘法大全(dot,* 和 mm,bmm,@,matmul)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/907719

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行