百度文库曲线验证码识别方案

2024-04-15 15:52

本文主要是介绍百度文库曲线验证码识别方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、前言

百度出了如图所示的验证码,需要拖动滑块,与如图所示的曲线轨迹进行重合。经过不断研究,终于解决了这个问题。我把识别代码分享给大家。

下面是使用selenium进行验证的,这样可以看到轨迹滑动的过程,如果需要使用js逆向的大神,可以自行研究,谢谢。

运行下面代码会直接进入验证码页面,可能会出现百度旋转验证码,我会通过刷新的方式,刷出百度曲线轨迹验证码。当出现验证码后会进行识别,然后计算滑动像素距离,然后进行拖动滑块,最后自动判断是否验证通过,并记录正确率,大家可以自行尝试。

具体的代码分享在下发,可能会因为selenium版本不同,导致部分语法略有不同,大家可以使用GPT进行一下转换。

想了解更多验证码识别,请访问:得塔云

二、识别代码

下面代码是我简单写的,有可能会有bug或写得不好的地方也请大神指教。如果对下面代码有疑问也可以给我留言、评论、私信。

import os
import sys
import time
import random
import base64
import requests
import io
from io import BytesIO
from PIL import Image, ImageDraw
from selenium import webdriver
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver.common.action_chains import ActionChains
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.select import Select
from selenium.webdriver import FirefoxOptions#PIL图片保存为base64编码
def PIL_base64(img, coding='utf-8'):img_format = img.formatif img_format == None:img_format = 'JPEG'format_str = 'JPEG'if 'png' == img_format.lower():format_str = 'PNG'if 'gif' == img_format.lower():format_str = 'gif'if img.mode == "P":img = img.convert('RGB')if img.mode == "RGBA":format_str = 'PNG'img_format = 'PNG'output_buffer = BytesIO()# img.save(output_buffer, format=format_str)img.save(output_buffer, quality=100, format=format_str)byte_data = output_buffer.getvalue()base64_str = 'data:image/' + img_format.lower() + ';base64,' + base64.b64encode(byte_data).decode(coding)return base64_str# 识别滑动距离
def shibie(img):# 图片转base64img_base64 = PIL_base64(img)# 验证码识别接口url = "http://www.detayun.cn/openapi/verify_code_identify/"data = {# 用户的key"key": "CcoAB3Cd78wXFQ07Zz3",# 验证码类型"verify_idf_id": "43",# 大图"img_base64": img_base64,}header = {"Content-Type": "application/json"}# 发送请求调用接口response = requests.post(url=url, json=data, headers=header)data = response.json()if data['code'] == 200:return data['data']['distance']else:print('状态码异常:',data)return# 运行程序
def run():# 打开邮政页面option = FirefoxOptions()# option.add_argument('--headless')driver = webdriver.Firefox(executable_path=r'webdriver\geckodriver.exe', options=option)# 记录成功次数t = 0#记录失败次数f = 0for i in range(2000):driver.get('https://seccaptcha.baidu.com/v1/webapi/verint/svcp.html?ak=M7bcdh2k6uqtYV5miaRiI8m8x6LIaONq&backurl=https%3A%2F%2Fwenku.baidu.com%2F%3F_wkts_%3D1705066238641&ext=ih2lW9VV3PmxmO%2B%2Bx8wZgk9i1xGx9WH05J9hI74kTEVkpokzRQ8QxLB082MG2VoQUUT15llYBwsC%2BAaysNoPxpuKg0Hkpo4qMzBjXDEGhuQ%3D&subid=pc_home&ts=1705066239&sign=1cebe634245cd92fc9eca10d0850a36b')time.sleep(3)html_str = driver.page_sourceif 'canvas' in html_str:if '曲线' in html_str:print('曲线验证码')# 等待画布加载完成WebDriverWait(driver, 20).until(lambda x: x.find_element_by_xpath('/html/body/div/div[2]/div/div/div/div[2]/canvas'))canvas_list = driver.find_elements_by_xpath('/html/body/div/div[2]/div/div/div/div[2]/canvas')# 图片列表img_list = []# 遍历所有的画布元素for canvas in canvas_list:# 使用JavaScript获取canvas的内容,并在WebDriver对象上调用execute_scriptcanvas_content = driver.execute_script("return arguments[0].toDataURL('image/png');", canvas)# 将base64编码的图片内容解码为字节img_bytes = base64.b64decode(canvas_content.split(',')[1])# 将字节转换为图片对象img = Image.open(io.BytesIO(img_bytes))img_list.append(img)# 合并所有图片为一张# 创建一个新的图片对象,用于合并所有的图片merged_img = Image.new('RGBA', (max(img.size[0] for img in img_list), max(img.size[1] for img in img_list)))# 将每个图片合并到merged_img上,保持透明度y_offset = 0for img in img_list:# 计算x偏移量以保持图片对齐(这里假设所有图片宽度相同)x_offset = 0# 将图片合并到merged_img上,保持透明度merged_img.paste(img, (x_offset, y_offset), img)# png图片转# 如果是png图片if str(merged_img.format).lower() == 'png':# 输出颜色模式if merged_img.mode == 'RGBA':# 创建一个新的白色背景图像white_background = Image.new('RGBA', merged_img.size, (255, 255, 255, 255))# 创建一个可以在白色背景上绘图的对象draw = ImageDraw.Draw(white_background)# 将原始的PNG图像粘贴到白色背景上,使用一个全白色的图像作为蒙版white_background.paste(merged_img, mask=merged_img)merged_img = white_background# img = img.convert('RGB')# 转换为JPG格式# 创建一个BytesIO对象output = io.BytesIO()# 将PNG图像转换为JPG格式并保存到BytesIO对象中merged_img.convert('RGB').save(output, 'JPEG')# 通过BytesIO对象创建PIL对象merged_img = Image.open(output)# 识别滑动位置y = shibie(merged_img)print('滑动距离为:', y)# 等待滑块出现WebDriverWait(driver, 10).until(lambda x: x.find_element_by_xpath('/html/body/div/div[2]/div/div/div/div[3]/div/div[2]'))yzm_button = driver.find_element_by_xpath('/html/body/div/div[2]/div/div/div/div[3]/div/div[2]')# 滑动滑块action = ActionChains(driver)action.click_and_hold(yzm_button).perform()# 计算实际滑动距离 = 像素距离 + 前面空白距离action.move_by_offset(y, 0)action.release().perform()# 判断是否成功 apptry:WebDriverWait(driver, 5).until(lambda x: x.find_element_by_xpath('//div[@id="app"]'))t += 1print('成功')except:f += 1print('失败')print('总次数:{},成功:{},失败:{},正确率:{}'.format(t + f, t, f, t/(t+f)))if __name__ == '__main__':run()

这篇关于百度文库曲线验证码识别方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906250

相关文章

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

IDEA中Git版本回退的两种实现方案

《IDEA中Git版本回退的两种实现方案》作为开发者,代码版本回退是日常高频操作,IntelliJIDEA集成了强大的Git工具链,但面对reset和revert两种核心回退方案,许多开发者仍存在选择... 目录一、版本回退前置知识二、Reset方案:整体改写历史1、IDEA图形化操作(推荐)1.1、查看提

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Python实现html转png的完美方案介绍

《Python实现html转png的完美方案介绍》这篇文章主要为大家详细介绍了如何使用Python实现html转png功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 1.增强稳定性与错误处理建议使用三层异常捕获结构:try: with sync_playwright(

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

MySQL中闪回功能的方案讨论及实现

《MySQL中闪回功能的方案讨论及实现》Oracle有一个闪回(flashback)功能,能够用户恢复误操作的数据,这篇文章主要来和大家讨论一下MySQL中支持闪回功能的方案,有需要的可以了解下... 目录1、 闪回的目标2、 无米无炊一3、 无米无炊二4、 演示5、小结oracle有一个闪回(flashb

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音