双调欧几里得旅行商问题的最优算法设计与实现

2024-04-15 12:12

本文主要是介绍双调欧几里得旅行商问题的最优算法设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

双调欧几里得旅行商问题(Double Bitonic TSP)是欧几里得旅行商问题(Euclidean TSP)的一个特殊版本。在标准的欧几里得旅行商问题中,我们需要找到一条最短的路径,这条路径要求访问者从一个城市出发,经过所有其他城市恰好一次,最后返回到起始城市。这个问题是非常复杂的,尤其是当城市数量很多时,可能的路径组合数量是巨大的,因此很难快速找到一个最优解。

而双调欧几里得旅行商问题对路径的走法做了特殊的限制,使得问题变得更加简单。在双调版本中,旅行商不是要访问所有的城市并返回起点,而是只需要从最左边的城市出发,沿着一条向右的路径经过一些城市,到达最右边,然后沿着一条向左的路径返回起点。简单来说,就像是先向右走一段,到达某个点后立即掉头向左走,形成一个类似“V”字型的路径。

这个版本的旅行商问题的特点是路径分为两个部分:向右的部分(递增部分)和向左的部分(递减部分)。这种特殊的走法限制了旅行商的行动,使得问题可以通过更加高效的算法来解决,比如动态规划,而不需要像解决标准欧几里得旅行商问题那样进行复杂的计算。

在解决双调欧几里得旅行商问题(Double Bitonic TSP)时,我们的目标是找到一条从最左边的点开始,严格向右前进至最右边的点,然后严格向左返回起始点的最短路径。这个问题的一个关键特点是,路径的第一部分是递增的(向右),第二部分是递减的(向左)。这种特殊的路径要求使得问题可以通过一种相对简单的动态规划方法来解决,其时间复杂度为O(n²)。

在这里插入图片描述

二、问题描述

给定平面上的n个点,每个点具有唯一的x坐标和y坐标。我们需要找到一条从最左边的点开始,严格向右到达最右边的点,然后严格向左返回起始点的最短路径。这条路径被称为双调巡游路线。

三、算法设计

3.1 动态规划方法

  1. 初始化:创建两个数组rightMinleftMin,它们的长度都为n,用于存储从左到右和从右到左的最小累积距离。

  2. 向右扫描:遍历点集,计算到达每个点的最短路径。对于每个点i,我们从rightMin[i-1]开始,加上从点i-1到点i的距离,然后更新rightMin[i]

  3. 向左扫描:从最右边的点开始,逆向遍历点集,计算到达每个点的最短路径。对于每个点i,我们从leftMin[i+1]开始,加上从点i+1到点i的距离,然后更新leftMin[i]

  4. 计算总距离:对于每个点i,计算rightMin[i] + leftMin[i+1]的值,这代表了从最左边的点开始,经过点i,然后返回起始点的最短路径。我们需要找到这些值中的最小值,这就是我们要找的双调巡游路线的总距离。

  5. 重构路径:一旦我们找到了最短路径的总距离,我们可以通过回溯rightMinleftMin数组来重构实际的路径。

3.2 伪代码

function DoubleBitonicTSP(points):n = length(points)rightMin = new array of size nleftMin = new array of size ntotalDistance = infinity// 初始化for i from 1 to n:rightMin[i] = 0leftMin[i] = 0// 向右扫描for i from 1 to n-1:for j from i to n-1:rightMin[j] = min(rightMin[j], rightMin[j-1] + distance(points[j], points[j-1]))// 向左扫描for i from n-1 down to 1:for j from i to 1:leftMin[j] = min(leftMin[j], leftMin[j+1] + distance(points[j], points[j+1]))// 计算总距离for i from 1 to n-1:totalDistance = min(totalDistance, rightMin[i] + leftMin[i+1])// 重构路径path = reconstructPath(rightMin, leftMin, totalDistance)return path, totalDistance

3.3 C代码实现

#include <stdio.h>
#include <stdlib.h>
#include <math.h>typedef struct {double x;double y;
} Point;double distance(const Point& a, const Point& b) {return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}void doubleBitonicTSP(Point points[], int n, double* totalDistance, Point* path) {double* rightMin = (double*)malloc(n * sizeof(double));double* leftMin = (double*)malloc(n * sizeof(double));for (int i = 0; i < n; i++) {rightMin[i] = 0;leftMin[i] = 0;}// 向右扫描for (int i = 1; i < n; i++) {double minDist = rightMin[i - 1];for (int j = i; j < n; j++) {rightMin[j] = min(minDist, rightMin[j - 1] + distance(points[j], points[j - 1]));minDist = rightMin[j];}}// 向左扫描for (int i = n - 2; i >= 0; i--) {double minDist = leftMin[i + 1];for (int j = i; j < n - 1; j++) {leftMin[j] = min(minDist, leftMin[j + 1] + distance(points[j], points[j + 1]));minDist = leftMin[j];}}*totalDistance = infinity;for (int i = 0; i < n - 1; i++) {*totalDistance = fmin(*totalDistance, rightMin[i] + leftMin[i + 1]);}// 重构路径// ... (此处省略重构路径的代码)free(rightMin);free(leftMin);
}int main() {// 示例:给定点集Point points[] = {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};int n = sizeof(points) / sizeof(points[0]);double totalDistance;Point path[2 * n - 1]; // 路径长度为2n - 1doubleBitonicTSP(points, n, &totalDistance, path);// 输出结果printf("Total Distance: %f\n", totalDistance);// 输出路径for (int i = 0; i < 2 * n - 1; i++) {printf("(%f, %f) ", path[i].x, path[i].y);}printf("\n");return 0;
}

3.4 算法分析

时间复杂度:算法的两个主要部分是向右扫描和向左扫描,每个部分都包含一个嵌套循环,它们的时间复杂度都是O(n²)。因此,整个算法的时间复杂度是O(n²)。

空间复杂度:我们使用了两个数组rightMinleftMin,每个数组的大小为n,因此空间复杂度为O(n)。

四、 结论

通过上述算法,我们可以在多项式时间内解决双调欧几里得旅行商问题。这个问题的简化版本通过限制路径的性质,使得原本NP难的旅行商问题变得可解。这种简化在实际应用中非常有用,尤其是在需要快速得到一个近似最优解的情况下。通过动态规划的方法,我们可以有效地找到最短的双调巡游路线,并且可以通过重构算法来确定实际的路径。这种方法不仅适用于理论研究,也适用于实际问题,如物流规划、电路设计等领域。

这篇关于双调欧几里得旅行商问题的最优算法设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905778

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time