双调欧几里得旅行商问题的最优算法设计与实现

2024-04-15 12:12

本文主要是介绍双调欧几里得旅行商问题的最优算法设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、背景

双调欧几里得旅行商问题(Double Bitonic TSP)是欧几里得旅行商问题(Euclidean TSP)的一个特殊版本。在标准的欧几里得旅行商问题中,我们需要找到一条最短的路径,这条路径要求访问者从一个城市出发,经过所有其他城市恰好一次,最后返回到起始城市。这个问题是非常复杂的,尤其是当城市数量很多时,可能的路径组合数量是巨大的,因此很难快速找到一个最优解。

而双调欧几里得旅行商问题对路径的走法做了特殊的限制,使得问题变得更加简单。在双调版本中,旅行商不是要访问所有的城市并返回起点,而是只需要从最左边的城市出发,沿着一条向右的路径经过一些城市,到达最右边,然后沿着一条向左的路径返回起点。简单来说,就像是先向右走一段,到达某个点后立即掉头向左走,形成一个类似“V”字型的路径。

这个版本的旅行商问题的特点是路径分为两个部分:向右的部分(递增部分)和向左的部分(递减部分)。这种特殊的走法限制了旅行商的行动,使得问题可以通过更加高效的算法来解决,比如动态规划,而不需要像解决标准欧几里得旅行商问题那样进行复杂的计算。

在解决双调欧几里得旅行商问题(Double Bitonic TSP)时,我们的目标是找到一条从最左边的点开始,严格向右前进至最右边的点,然后严格向左返回起始点的最短路径。这个问题的一个关键特点是,路径的第一部分是递增的(向右),第二部分是递减的(向左)。这种特殊的路径要求使得问题可以通过一种相对简单的动态规划方法来解决,其时间复杂度为O(n²)。

在这里插入图片描述

二、问题描述

给定平面上的n个点,每个点具有唯一的x坐标和y坐标。我们需要找到一条从最左边的点开始,严格向右到达最右边的点,然后严格向左返回起始点的最短路径。这条路径被称为双调巡游路线。

三、算法设计

3.1 动态规划方法

  1. 初始化:创建两个数组rightMinleftMin,它们的长度都为n,用于存储从左到右和从右到左的最小累积距离。

  2. 向右扫描:遍历点集,计算到达每个点的最短路径。对于每个点i,我们从rightMin[i-1]开始,加上从点i-1到点i的距离,然后更新rightMin[i]

  3. 向左扫描:从最右边的点开始,逆向遍历点集,计算到达每个点的最短路径。对于每个点i,我们从leftMin[i+1]开始,加上从点i+1到点i的距离,然后更新leftMin[i]

  4. 计算总距离:对于每个点i,计算rightMin[i] + leftMin[i+1]的值,这代表了从最左边的点开始,经过点i,然后返回起始点的最短路径。我们需要找到这些值中的最小值,这就是我们要找的双调巡游路线的总距离。

  5. 重构路径:一旦我们找到了最短路径的总距离,我们可以通过回溯rightMinleftMin数组来重构实际的路径。

3.2 伪代码

function DoubleBitonicTSP(points):n = length(points)rightMin = new array of size nleftMin = new array of size ntotalDistance = infinity// 初始化for i from 1 to n:rightMin[i] = 0leftMin[i] = 0// 向右扫描for i from 1 to n-1:for j from i to n-1:rightMin[j] = min(rightMin[j], rightMin[j-1] + distance(points[j], points[j-1]))// 向左扫描for i from n-1 down to 1:for j from i to 1:leftMin[j] = min(leftMin[j], leftMin[j+1] + distance(points[j], points[j+1]))// 计算总距离for i from 1 to n-1:totalDistance = min(totalDistance, rightMin[i] + leftMin[i+1])// 重构路径path = reconstructPath(rightMin, leftMin, totalDistance)return path, totalDistance

3.3 C代码实现

#include <stdio.h>
#include <stdlib.h>
#include <math.h>typedef struct {double x;double y;
} Point;double distance(const Point& a, const Point& b) {return sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));
}void doubleBitonicTSP(Point points[], int n, double* totalDistance, Point* path) {double* rightMin = (double*)malloc(n * sizeof(double));double* leftMin = (double*)malloc(n * sizeof(double));for (int i = 0; i < n; i++) {rightMin[i] = 0;leftMin[i] = 0;}// 向右扫描for (int i = 1; i < n; i++) {double minDist = rightMin[i - 1];for (int j = i; j < n; j++) {rightMin[j] = min(minDist, rightMin[j - 1] + distance(points[j], points[j - 1]));minDist = rightMin[j];}}// 向左扫描for (int i = n - 2; i >= 0; i--) {double minDist = leftMin[i + 1];for (int j = i; j < n - 1; j++) {leftMin[j] = min(minDist, leftMin[j + 1] + distance(points[j], points[j + 1]));minDist = leftMin[j];}}*totalDistance = infinity;for (int i = 0; i < n - 1; i++) {*totalDistance = fmin(*totalDistance, rightMin[i] + leftMin[i + 1]);}// 重构路径// ... (此处省略重构路径的代码)free(rightMin);free(leftMin);
}int main() {// 示例:给定点集Point points[] = {{0, 0}, {1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}, {6, 6}};int n = sizeof(points) / sizeof(points[0]);double totalDistance;Point path[2 * n - 1]; // 路径长度为2n - 1doubleBitonicTSP(points, n, &totalDistance, path);// 输出结果printf("Total Distance: %f\n", totalDistance);// 输出路径for (int i = 0; i < 2 * n - 1; i++) {printf("(%f, %f) ", path[i].x, path[i].y);}printf("\n");return 0;
}

3.4 算法分析

时间复杂度:算法的两个主要部分是向右扫描和向左扫描,每个部分都包含一个嵌套循环,它们的时间复杂度都是O(n²)。因此,整个算法的时间复杂度是O(n²)。

空间复杂度:我们使用了两个数组rightMinleftMin,每个数组的大小为n,因此空间复杂度为O(n)。

四、 结论

通过上述算法,我们可以在多项式时间内解决双调欧几里得旅行商问题。这个问题的简化版本通过限制路径的性质,使得原本NP难的旅行商问题变得可解。这种简化在实际应用中非常有用,尤其是在需要快速得到一个近似最优解的情况下。通过动态规划的方法,我们可以有效地找到最短的双调巡游路线,并且可以通过重构算法来确定实际的路径。这种方法不仅适用于理论研究,也适用于实际问题,如物流规划、电路设计等领域。

这篇关于双调欧几里得旅行商问题的最优算法设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905778

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Android实现打开本地pdf文件的两种方式

《Android实现打开本地pdf文件的两种方式》在现代应用中,PDF格式因其跨平台、稳定性好、展示内容一致等特点,在Android平台上,如何高效地打开本地PDF文件,不仅关系到用户体验,也直接影响... 目录一、项目概述二、相关知识2.1 PDF文件基本概述2.2 android 文件访问与存储权限2.

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求