待会删!26.7 Star!LangChain-Chatchat 开源知识库来了

2024-04-15 09:44

本文主要是介绍待会删!26.7 Star!LangChain-Chatchat 开源知识库来了,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ▼最近直播超级多,预约保你有收获

f3d432f34eb7f433e316489d0f12c8db.png

LangChain-Chatchat 是基于 ChatGLM 等大语言模型与 LangChain 等应用框架实现,开源、可离线部署的 RAG 检索增强生成大模型知识库项目。最新版本为 v0.2.10,目前已收获 26.7k Stars,非常不错的一个开源知识库项目。

项目地址:https://github.com/chatchat-space/Langchain-Chatchat

 1

LangChain-Chatchat 架构设计

顾名思义,LangChain-Chatchat 利用 LangChain 思想实现的基于本地知识库的问答应用,目标期望建立一套对中文场景与开源模型支持友好、可离线运行的知识库问答解决方案。

依托于本项目支持的开源 LLM 大模型与 Embedding 嵌入模型,本项目可实现全部使用开源模型离线私有部署。与此同时,本项目也支持 OpenAI GPT API 的调用,并将在后续持续扩充对各类模型及模型 API 的接入。

本项目实现原理如下图所示,过程包括加载文件 -> 读取文本 -> 文本分割 -> 文本向量化 -> 问句向量化 -> 在文本向量中匹配出与问句向量最相似的 Top K 个 -> 匹配出的文本作为上下文和问题一起添加到 Prompt 中 -> 提交给 LLM 大模型生成回答。

a654f0a5aba2dcee33a025240890f5b3.png

从文档处理角度来看,实现流程如下:

4e9048e7b8005cea20fbad2cd66ce275.png

LangChain-ChatChat 具体实现过程如下:

第一、任务定义

首先,我们需要定义问答任务。在 LangChain 中,任务是通过一系列 JSON 格式的配置文件来定义的。对于问答任务,我们需要指定输入文本、输出文本、知识库等相关信息。

第二、模型选择

在定义完任务后,我们需要选择合适的模型来完成任务。LangChain 支持多种自然语言处理模型,比如:BERT、GPT 等。对于问答任务,我们可以选择使用问答模型,比如:QA-BERT、QA-GPT 等。

第三、数据处理

在模型选择完成后,我们需要对输入数据进行处理。这包括文本清洗、分词、编码等步骤。LangChain 提供了一系列工具和库,方便我们进行数据处理。

第四、输出生成

最后,我们需要将模型的输出转换为人类可读的格式。在问答任务中,输出通常是一个答案文本。我们可以使用 LangChain 提供的输出生成工具,将模型的输出转换为格式化的答案文本。

 2

一键本地离线部署

第一、软件环境

  • Linux Ubuntu 22.04.5 kernel version 6.7

  • Python 版本: >= 3.8(很不稳定), < 3.12,推荐 3.11.7

  • CUDA 版本: >= 12.1,推荐 12.1

第二、硬件环境

  • 取决于选择的大模型,在 GPU 运行本地模型的 FP16 版本,至少需要以下的硬件配置,来保证对话的稳定连续。

  • ChatGLM3-6B & LLaMA-7B-Chat 等 7B 模型

    • 最低显存要求: 14GB

    • 推荐显卡: RTX 4080

  • Qwen-14B-Chat 等 14B 模型

    • 最低显存要求: 30GB

    • 推荐显卡: V100

第三、支持三种部署方式

  • 轻量化部署、Docker 部署、常规部署

  • 建议使用 Docker 一键部署

  • docker run -d --gpus all -p 80:8501 registry.cn-beijing.aliyuncs.com/chatchat/chatchat:0.2.0

为了帮助同学们彻底掌握大模型的知识库、向量数据库、 RAG、Agent 智能体、知识图谱的应用开发、部署、生产化,今晚20点我会开一场直播和同学们深度剖析,请同学们点击以下预约按钮免费预约

 3

!送!AI大模型开发直播课程

大模型的技术体系非常复杂,即使有了知识图谱和学习路线后,快速掌握并不容易,我们打造了大模型应用技术的系列直播课程,包括:通用大模型技术架构原理、大模型 Agent 应用开发、企业私有大模型开发、向量数据库、大模型应用治理、大模型应用行业落地案例等6项核心技能,帮助同学们快速掌握 AI 大模型的技能。

 🔥即将开播 

立即扫码,即可免费预约

进入直播,大佬直播在线答疑!

c5746e48c95fe03e0c818a9fca1a0a6d.gif

7234298e6b71fb72df2a7652c12b8d1d.png

本期名额有限

高度起始于速度(手慢无!!)

 4

!!再送!!《AI 大模型技术知识图谱

最近很多同学在后台留言:“玄姐,AI 大模型技术的知识图谱有没?”、“AI 大模型技术有学习路线吗?”

我们倾心整理了 AI 大模型技术的知识图谱快来领取吧!

dcbad2d445def6972f3917a53eaf6727.png

这份业界首创知识图谱和学习路线,今天免费送给大家一份!

只需要以下3步操作就可免费领取:

第一步长按扫码以下我的视频号:玄姐谈AGI

0ed27a4555fd4006ba608b1e64793c09.png

第二步:扫码后,点击以下关注按钮,就可关注我。

29dcdc035755a4367d5e41f81941ddad.jpeg

第三步:点击"客服“按钮,回复知识图谱即可领取。

02466d75507cb77bc5f598b0737800f2.jpeg

END

这篇关于待会删!26.7 Star!LangChain-Chatchat 开源知识库来了的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905473

相关文章

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

金融业开源技术 术语

金融业开源技术  术语 1  范围 本文件界定了金融业开源技术的常用术语。 本文件适用于金融业中涉及开源技术的相关标准及规范性文件制定和信息沟通等活动。

安全管理体系化的智慧油站开源了。

AI视频监控平台简介 AI视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。用户只需在界面上进行简单的操作,就可以实现全视频的接入及布控。摄像头管理模块用于多种终端设备、智能设备的接入及管理。平台支持包括摄像头等终端感知设备接入,为整个平台提

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

HomeBank:开源免费的个人财务管理软件

在个人财务管理领域,找到一个既免费又开源的解决方案并非易事。HomeBank&nbsp;正是这样一个项目,它不仅提供了强大的功能,还拥有一个活跃的社区,不断推动其发展和完善。 开源免费:HomeBank 是一个完全开源的项目,用户可以自由地使用、修改和分发。用户友好的界面:提供直观的图形用户界面,使得非技术用户也能轻松上手。数据导入支持:支持从 Quicken、Microsoft Money

开源分布式数据库中间件

转自:https://www.csdn.net/article/2015-07-16/2825228 MyCat:开源分布式数据库中间件 为什么需要MyCat? 虽然云计算时代,传统数据库存在着先天性的弊端,但是NoSQL数据库又无法将其替代。如果传统数据易于扩展,可切分,就可以避免单机(单库)的性能缺陷。 MyCat的目标就是:低成本地将现有的单机数据库和应用平滑迁移到“云”端

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

开源Apache服务器安全防护技术精要及实战

Apache 服务简介   Web服务器也称为WWW服务器或HTTP服务器(HTTPServer),它是Internet上最常见也是使用最频繁的服务器之一,Web服务器能够为用户提供网页浏览、论坛访问等等服务。   由于用户在通过Web浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而Web在Internet上一推出就得到了爆炸性的发展。现在Web服务器已