深度学习学习日记4.14 数据增强 Unet网络部分

2024-04-15 00:36

本文主要是介绍深度学习学习日记4.14 数据增强 Unet网络部分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据增强
在这里插入图片描述
transforms.Compose([:这表示创建一个转换组合将多个数据转换操作串联在一起
transforms.RandomHorizontalFlip():这个操作是随机水平翻转图像,以增加数据的多样性。它以一定的概率随机地水平翻转输入的图像。
transforms.Resize(image_size):这个操作用于将图像调整为指定的大小。image_size 是所需的输出图像大小,可以是一个整数或一个 (height, width) 元组。
transforms.CenterCrop(image_size):这个操作用于从图像的中心裁剪出指定大小的区域。同样,image_size 可以是一个整数或一个 (height, width) 元组。
transforms.ToTensor():这个操作将图像转换为 PyTorch 张量格式。它会将 PIL 图像或 ndarray 转换为张量,并对像素值进行归一化到 [0, 1] 的范围内。
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]):这个操作用于对图像进行标准化。它对张量的每个通道进行归一化处理,使得每个通道的均值为 0.485、0.456、0.406,标准差为 0.229、0.224、0.225。
Unet下采样:两层的卷积+relu+maxpooling
1.继承nn.model
2.初始化参数,输入channel,输出channel
nn.sequential序列 中写 卷积,relu(inplce=True节省计算资源),卷积,Relu
最大池化层,缩减为1/2 长宽都减小一般
3.前向传播:需要有参数是否做maxpooling
在这里插入图片描述
在这里插入图片描述
Unet上采样:卷积、卷积 反卷积 不需要设置outchannel
1.继承nn.model
2.初始化参数,只需要输入通道数
nn.sequential序列中写 卷积(输入是输出的2倍(有contact操作))relu ,卷积,relu
反卷积的nn.sequential 输出通道数减半,保证图片的长宽是原来的2倍和relu函数
在这里插入图片描述
在这里插入图片描述
3.前向传播,卷积卷积 ,反卷积
Unet的整体结构:
encoder:先池化后卷积
decoder:卷积卷积反卷积
需要把前面卷积的数据进行融合
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#网络
class Downsample(nn.Module):def __init__(self, in_channels, out_channels):super(Downsample, self).__init__()self.conv_relu = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),nn.ReLU(inplace=True))self.pool = nn.MaxPool2d(kernel_size=2)def forward(self, x, is_pool=True):if is_pool:x = self.pool(x)x = self.conv_relu(x)return x
class Upsample(nn.Module):def __init__(self, channels):super(Upsample, self).__init__()self.conv_relu = nn.Sequential(nn.Conv2d(2*channels, channels, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(channels, channels,  kernel_size=3, padding=1),nn.ReLU(inplace=True))self.upconv_relu = nn.Sequential(nn.ConvTranspose2d(channels, channels//2, kernel_size=3,stride=2,padding=1,output_padding=1),nn.ReLU(inplace=True))def forward(self, x):x = self.conv_relu(x)x = self.upconv_relu(x)return x
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.down1 = Downsample(3, 64)self.down2 = Downsample(64, 128)self.down3 = Downsample(128, 256)self.down4 = Downsample(256, 512)self.down5 = Downsample(512, 1024)self.up = nn.Sequential(nn.ConvTranspose2d(1024, 512, kernel_size=3,stride=2,padding=1,output_padding=1),nn.ReLU(inplace=True))self.up1 = Upsample(512)self.up2 = Upsample(256)self.up3 = Upsample(128)self.conv_2 = Downsample(128, 64)self.last = nn.Conv2d(64, 2, kernel_size=1)def forward(self, x):x1 = self.down1(x, is_pool=False)x2 = self.down2(x1)x3 = self.down3(x2)x4 = self.down4(x3)x5 = self.down5(x4)x5 = self.up(x5)x5 = torch.cat([x4, x5], dim=1)           # 32*32*1024x5 = self.up1(x5)                         # 64*64*256)x5 = torch.cat([x3, x5], dim=1)           # 64*64*512  x5 = self.up2(x5)                         # 128*128*128x5 = torch.cat([x2, x5], dim=1)           # 128*128*256x5 = self.up3(x5)                         # 256*256*64x5 = torch.cat([x1, x5], dim=1)           # 256*256*128x5 = self.conv_2(x5, is_pool=False)       # 256*256*64x5 = self.last(x5)                        # 256*256*3return x5
#测试模型
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model=Net().to(device)
# x = torch.rand([8,3,256,256])
# x=x.to(device)
# y=model(x)
# y.shape

这篇关于深度学习学习日记4.14 数据增强 Unet网络部分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904447

相关文章

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现