深度学习学习日记4.14 数据增强 Unet网络部分

2024-04-15 00:36

本文主要是介绍深度学习学习日记4.14 数据增强 Unet网络部分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据增强
在这里插入图片描述
transforms.Compose([:这表示创建一个转换组合将多个数据转换操作串联在一起
transforms.RandomHorizontalFlip():这个操作是随机水平翻转图像,以增加数据的多样性。它以一定的概率随机地水平翻转输入的图像。
transforms.Resize(image_size):这个操作用于将图像调整为指定的大小。image_size 是所需的输出图像大小,可以是一个整数或一个 (height, width) 元组。
transforms.CenterCrop(image_size):这个操作用于从图像的中心裁剪出指定大小的区域。同样,image_size 可以是一个整数或一个 (height, width) 元组。
transforms.ToTensor():这个操作将图像转换为 PyTorch 张量格式。它会将 PIL 图像或 ndarray 转换为张量,并对像素值进行归一化到 [0, 1] 的范围内。
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]):这个操作用于对图像进行标准化。它对张量的每个通道进行归一化处理,使得每个通道的均值为 0.485、0.456、0.406,标准差为 0.229、0.224、0.225。
Unet下采样:两层的卷积+relu+maxpooling
1.继承nn.model
2.初始化参数,输入channel,输出channel
nn.sequential序列 中写 卷积,relu(inplce=True节省计算资源),卷积,Relu
最大池化层,缩减为1/2 长宽都减小一般
3.前向传播:需要有参数是否做maxpooling
在这里插入图片描述
在这里插入图片描述
Unet上采样:卷积、卷积 反卷积 不需要设置outchannel
1.继承nn.model
2.初始化参数,只需要输入通道数
nn.sequential序列中写 卷积(输入是输出的2倍(有contact操作))relu ,卷积,relu
反卷积的nn.sequential 输出通道数减半,保证图片的长宽是原来的2倍和relu函数
在这里插入图片描述
在这里插入图片描述
3.前向传播,卷积卷积 ,反卷积
Unet的整体结构:
encoder:先池化后卷积
decoder:卷积卷积反卷积
需要把前面卷积的数据进行融合
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#网络
class Downsample(nn.Module):def __init__(self, in_channels, out_channels):super(Downsample, self).__init__()self.conv_relu = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),nn.ReLU(inplace=True))self.pool = nn.MaxPool2d(kernel_size=2)def forward(self, x, is_pool=True):if is_pool:x = self.pool(x)x = self.conv_relu(x)return x
class Upsample(nn.Module):def __init__(self, channels):super(Upsample, self).__init__()self.conv_relu = nn.Sequential(nn.Conv2d(2*channels, channels, kernel_size=3, padding=1),nn.ReLU(inplace=True),nn.Conv2d(channels, channels,  kernel_size=3, padding=1),nn.ReLU(inplace=True))self.upconv_relu = nn.Sequential(nn.ConvTranspose2d(channels, channels//2, kernel_size=3,stride=2,padding=1,output_padding=1),nn.ReLU(inplace=True))def forward(self, x):x = self.conv_relu(x)x = self.upconv_relu(x)return x
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.down1 = Downsample(3, 64)self.down2 = Downsample(64, 128)self.down3 = Downsample(128, 256)self.down4 = Downsample(256, 512)self.down5 = Downsample(512, 1024)self.up = nn.Sequential(nn.ConvTranspose2d(1024, 512, kernel_size=3,stride=2,padding=1,output_padding=1),nn.ReLU(inplace=True))self.up1 = Upsample(512)self.up2 = Upsample(256)self.up3 = Upsample(128)self.conv_2 = Downsample(128, 64)self.last = nn.Conv2d(64, 2, kernel_size=1)def forward(self, x):x1 = self.down1(x, is_pool=False)x2 = self.down2(x1)x3 = self.down3(x2)x4 = self.down4(x3)x5 = self.down5(x4)x5 = self.up(x5)x5 = torch.cat([x4, x5], dim=1)           # 32*32*1024x5 = self.up1(x5)                         # 64*64*256)x5 = torch.cat([x3, x5], dim=1)           # 64*64*512  x5 = self.up2(x5)                         # 128*128*128x5 = torch.cat([x2, x5], dim=1)           # 128*128*256x5 = self.up3(x5)                         # 256*256*64x5 = torch.cat([x1, x5], dim=1)           # 256*256*128x5 = self.conv_2(x5, is_pool=False)       # 256*256*64x5 = self.last(x5)                        # 256*256*3return x5
#测试模型
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model=Net().to(device)
# x = torch.rand([8,3,256,256])
# x=x.to(device)
# y=model(x)
# y.shape

这篇关于深度学习学习日记4.14 数据增强 Unet网络部分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/904447

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶