基于暗通道的图像去雾算法_CVPR09 BestPaper_KaiMing He

2024-04-14 20:38

本文主要是介绍基于暗通道的图像去雾算法_CVPR09 BestPaper_KaiMing He,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前一阶段做项目用到了 何凯明的这篇文章中的算法,闲来无事,总结一下。

 

其实,对于图像去雾,去模糊,去噪声问题,数学模型都非常接近,而且非常简单,由于数学模型非常简单,如何有效的估计其中的参数就是重点了。以前有大量的文章是基于先验假设的,这类方法有很大的局限性,而何凯明的这篇文章的确是给出了一个去雾问题的比较好的模型。

-------------------------------

先介绍一下何凯明这个人:

     当年的广东省高考状元,然后进入清华,应该是基础班,搞数学物理这些基础的东西,这些基础的东西肯定对他的科学研究有很大的作用,这篇文章就足以说明问题。清华毕业,应该是去了香港中文大学,然后在微软亚洲研究院实习,实习期间应该很长一段时间是搞的Matting,当时还没有太好的成果,可是突然就出了这样一篇文章,令国人骄傲。当然,这篇文章也有地方用到了Matting,包括接下来也陆续发表了一些Matting的文章,现在所在何处,暂不知晓了。

-------------------------------

去雾问题的数学模型:

        

        其中:I为haze image,即输入图像, J:haze free image,即目标图像 A:大气光atmopheric light  t: 透射率transmission   

有了这个数学模型,我们就可以来求解目标无雾图像,即J了。而要求出J,必须尽可能好的去估计:t 和A,而现在我们知道的就只有输入图像I,要去估计这两个值,如果没有先验知识的话难度还是比较大的。所以,前面的一些文章中利用假设先验来解决此问题也是不得已而为之的办法。但是没有先验假设又难以解决问题,那么该怎么办呢?这篇文章给了我们一个比较好的解决办法,何凯明通过统计无雾图片并分析其中的假设,得出了一个 暗通道的先验假设,即dark channel prior.这个先验知识是通过统计得来的,可以视为是物理规律,而不是人为假设,所以对于问题的解决更简单也更准确,效果更好。


Dark Channel Prior:

  在无雾图像中,在大多数局部区域内,其中的一些像素会在某个通道内含有非常低的像素值(换句话说也就是,在某个区域内,所有像素的各个通道的最小值的像素值非常小(0~16))。这些像素值的产生主要是由于阴影(shadow), 彩色物体(colorful object)(某一个通道的值太大,导致其他通道的值小), 黑色物体。


因此,由上面的定义我们就可以按块来求出图像的暗通道图像:

  

做一次图像像素遍历即可


由于大气光的影响,haze image要比haze free image更白,也就是说暗通道处要更亮,并且雾越农,暗通道便会越白。通过这个特性,便可以使用dark channel prior去估计雾。至于估计方法,有兴趣的还是去看论文吧。

这个是估计结果:

  

其中,w是为了不使图像失真,而引人的控制保留雾的比重的参数。(在这里,先假设大气光A在每个块内相同)


估计出透射率,我们还要去求解大气光A,文章中给出的估计方法是:

  the pixels with highest intensity in the input image I is selected as the atmopheric light.


这两个参数都估计出来,我们就可以带入最初始的方程中,求解出haze-free image了,即:

引人t_0的目的是为了防止t(x)近似于0,而导致引人噪声,t_0是t(x)的一个下界。


如果只是这样做,那么恢复的图像会有锯齿,那是我们估计的透射率图像所引人的,而为了消除这种效应,就必须对透射率图像进行修正,在文章中修正的方法是soft matting。在我的项目中,我使用了高斯模糊代替matting的方法,主要原因是写matting没写出来。在ECCV10上,作者有发表了一篇Guided image filter的文章,这个文章中的算法,我在项目中也用到了,其实,这篇文章中的算法就是对matting的一个较好的近似,以后有时间,再说一下那篇文章。


很粗略的介绍了一下这篇文章,一是因为这篇文章的思想实在是太简单,而实现上的难点也就是存在于Matting上,二是因为的确是不想写得太细,因为这是中国的第一篇CVPR Best Paper,有兴趣还是应该读一下文章。

最近实验室又来了一个清华的牛人,也是当年的高考状元,在清华一路读到博士后,PAMI上有文章,做事情非常谦虚严谨认真,再反观自己,的确还是有很多不足。

我想我们出不了best paper,不是智力上的差异,也不仅仅是教育的问题,其实更多的还是我们自己的态度问题,当然,一个自由宽松的学术氛围也是非常重要的,国内在这一点上的确是不怎么样,大家都太功利化了,可是这也不是大家的错,此处省略无数字。。。。

 

写到这,有关这篇论文以及guided image filter,欢迎指教。

这篇关于基于暗通道的图像去雾算法_CVPR09 BestPaper_KaiMing He的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903963

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57