1.16 LeetCode总结(基本算法)动态规划2

2024-04-14 16:44

本文主要是介绍1.16 LeetCode总结(基本算法)动态规划2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


70. 爬楼梯

在这里插入图片描述
首先想到的是递归:

// 递归
int climbStairs(int n) {if (n == 1) {return 1;} else if (n == 2) {return 2;}return climbStairs(n - 1) + climbStairs(n - 2);
}

在这里插入图片描述
我们先来看看这个递归的时间复杂度吧:

递归时间复杂度 = 解决一个子问题时间*子问题个数
一个子问题时间 = f(n-1)+ f(n-2),也就是一个加法的操作,所以复杂度是 O(1);
问题个数 = 递归树节点的总数,递归树的总节点 = 2n-1,所以是复杂度O(2n)。
因此,青蛙跳阶,递归解法的时间复杂度 = O(1) * O(2^n) = O(2^n),就是指数级别的,爆炸增长的,如果n比较大的话,超时很正常的了。

回过头来,你仔细观察这颗递归树,你会发现存在大量重复计算,比如 f(8) 被计算了两次,f(7) 被重复计算了3次…所以这个递归算法低效的原因,就是存在大量的重复计算!

既然存在大量重复计算,那么我们可以先把计算好的答案存下来,即造一个备忘录,等到下次需要的话,先去备忘录查一下,如果有,就直接取就好了,备忘录没有才开始计算,那就可以省去重新重复计算的耗时啦!这就是带备忘录的解法。

自底向上的动态规划
动态规划跟带备忘录的递归解法基本思想是一致的,都是减少重复计算,时间复杂度也都是差不多。但是呢:

带备忘录的递归,是从f(10)往f(1)方向延伸求解的,所以也称为自顶向下的解法。
动态规划从较小问题的解,由交叠性质,逐步决策出较大问题的解,它是从f(1)往f(10)方向,往上推求解,所以称为自底向上的解法。
动态规划有几个典型特征,最优子结构、状态转移方程、边界、重叠子问题。在青蛙跳阶问题中:

f(n-1) 和 f(n-2) 称为 f(n) 的最优子结构
f(n) = f(n-1) + f(n-2) 就称为状态转移方程
f(1) = 1, f(2) = 2 就是边界啦
比如f(10)= f(9)+f(8), f(9) = f(8) + f(7) , f(8)就是重叠子问题。
我们来看下自底向上的解法,从 f(1) 往 f(10) 方向,想想是不是直接一个for循环就可以解决啦,如下:
在这里插入图片描述

int climbStairs(int n){//f(x) = f(x-1) + f(x-2) if (n <= 1){ // 第0阶和第1阶只有一种方法return 1;}int way;int memo[2] = {1,1};for (int i = 2; i <= n; ++i) {// 上楼梯->从第2阶楼梯开始way = memo[0] + memo[1];memo[0] = memo[1];memo[1] = way;}return way;
}

动态规划的解题思路
动态规划的核心思想就是拆分子问题,记住过往,减少重复计算。 并且动态规划一般都是自底向上的,因此到这里,基于青蛙跳阶问题,我总结了一下我做动态规划的思路:

  1. 穷举分析
    当台阶数是1的时候,有一种跳法,f(1) = 1
    当只有2级台阶时,有两种跳法,第一种是直接跳两级,第二种是先跳一级,然后再跳一级。即f(2) = 2;
    当台阶是3级时,想跳到第3级台阶,要么是先跳到第2级,然后再跳1级台阶上去,要么是先跳到第 1级,然后一次迈 2 级台阶上去。所以f(3) = f(2) + f(1) = 3
    当台阶是4级时,想跳到第3级台阶,要么是先跳到第3级,然后再跳1级台阶上去,要么是先跳到第 2级,然后一次迈 2 级台阶上去。所以f(4) = f(3) + f(2) = 5
    当台阶是5级时…
  1. 确定边界
    通过穷举分析,我们发现,当台阶数是1的时候或者2的时候,可以明确知道青蛙跳法。f(1) =1,f(2) = 2,当台阶n>=3时,已经呈现出规律f(3) = f(2) + f(1) =3,因此f(1) =1,f(2) = 2就是青蛙跳阶的边界。
  1. 找出规律,确定最优子结构
    n>=3时,已经呈现出规律 f(n) = f(n-1) + f(n-2) ,因此,f(n-1)和f(n-2) 称为 f(n) 的最优子结构。什么是最优子结构?有这么一个解释: 一道动态规划问题,其实就是一个递推问题。假设当前决策结果是f(n),则最优子结构就是要让 f(n-k) 最优,最优子结构性质就是能让转移到n的状态是最优的,并且与后面的决策没有关系,即让后面的决策安心地使用前面的局部最优解的一种性质
  1. 写出状态转移方程
    通过前面3步,穷举分析,确定边界,最优子结构,我们就可以得出状态转移方程啦
  1. 代码实现
    我们实现代码的时候,一般注意从底往上遍历,然后关注下边界情况,空间复杂度,也就差不多啦。动态规划有个框架的,大家实现的时候,可以考虑适当参考一下:
dp[0][0][...] = 边界值
for (状态1 :所有状态1的值) {for (状态2 :所有状态2的值) {for (...) {// 状态转移方程dp[状态1][状态2][...] = 求最值}}
}

118. 杨辉三角

在这里插入图片描述

int **generate(int numRows, int *returnSize, int **returnColumnSizes)
{int **res = (int **)malloc(sizeof(int *) * numRows);;*returnSize = numRows; // 行个数*returnColumnSizes = (int *)malloc(sizeof(int) * numRows); // 一维数组,每个元素代表了当前排有多少个有效的列printf("int *%d\n", sizeof(int *));printf("int %d\n",  sizeof(int));for (int i = 0; i < numRows; ++i) {res[i] = (int *)malloc(sizeof(int) * (i + 1));(*returnColumnSizes)[i] = i + 1; // 列元素个数res[i][0] = res[i][i] = 1;for (int j = 1; j < i; ++j) {res[i][j] = res[i - 1][j - 1] + res[i - 1][j];}}return res;
}

在LeetCode里 Sizeof(int *) 和 Sizeof(int)的大小时不一样的,注意:
https://img-blog.csdnimg.cn/311a735f68f14e01969e9f3bc327837e.png)


C 动态规划举例

在这里插入图片描述
手法1. 首先容易想到的是使用递归来求解,但递归的效率很低

// 递归 
int climbStairs(int n) {if (n <= 2) {return n;}return climbStairs(n - 1) + climbStairs(n - 2);
}

其实记忆化搜索就是在递归的条件上,为减少递归次数而产生的
比如下述代码中对于 mem[n] !=0 直接return memo[n].
我们总是习惯自顶向下思考问题,而不容易自底向上思考问题

手法2:记忆化搜索 – 自顶向下

// 记忆化搜索 -- 自顶往下
int memo[64] = { 0 };
int climbStairs(int n) {if (n <= 2) {return n;}// 如果满足条件则直接返回记忆数组里的值,减少递归次数if (n < 64 && memo[n] != 0) {return memo[n];}// 不满足条件才进行递归 O(n)memo[n] = climbStairs(n-1) + climbStairs(n-2);return memo[n];
}

手法3:动态规划 – 自底往上

// 动态规划 -- 自底往上
int climbStairs(int n) {if (n <= 2) {return n;}int a1 = 1;int a2 = 2;int memo = 0;// 自下而上的进行计算,动态规划for (int i = 3; i <= n; i++) {memo = a1 + a2;a1  = a2;a2  = memo;}return memo;
}

动态规划,将原问题拆解成若干子问题,同时保存子问题的答案,使得每个子问题只求解一次,最终获得原问题的答案;
下面这个图非常清晰地说明了动态规划的引入
在这里插入图片描述


D 0-1背包问题

– 动态规划中可以解决的一类最为经典的问题 – 01背包问题
在这里插入图片描述
状态转移方程:
状态转移

调试程序可以采用如下图片的数据,利于理解背包算法:
建立一个 3*6 二维数组,第0行只考虑第0个物品;第一行考虑 a[1][2]的weight为2,既可以放在id0的物品,也可以放下id1的物品;但两者相比,id1的物品要大一些,我们考虑放id1的物品。

在这里插入图片描述
如图,在放置a[1][2]这个元素时考虑:如果不放 ID1 的物品,那么背包价值为6,如果考虑放 ID1 的物品,需要回到a[0][0]的价值,加上放 ID1 物品的价值和为10,两者比较(10 > 6),放的价值大,所以考虑放 ID1的物品。
继续布满这个图,则得到下图:
在这里插入图片描述
如图,在放置a[2][4]这个元素时考虑:如果不放 ID2 的物品,那么背包价值为16,如果考虑放 ID2 的物品,需要回到a[1][1]的价值 6 ,加上放 ID2 物品的价值和为18,两者比较(18 > 16),放的价值大,所以考虑放 ID2的物品。

如下代码,就是建立上述图片里的二维数组的值(先求解了第0行数组和第1行往后的逐列逐行数组)
在这里插入图片描述

其实我们做0-1背包问题时,就是自底向上地完善这个 3*6 的二维数组,而处理的思路正好就是 动态规划.

这篇关于1.16 LeetCode总结(基本算法)动态规划2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/903500

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

哈希leetcode-1

目录 1前言 2.例题  2.1两数之和 2.2判断是否互为字符重排 2.3存在重复元素1 2.4存在重复元素2 2.5字母异位词分组 1前言 哈希表主要是适合于快速查找某个元素(O(1)) 当我们要频繁的查找某个元素,第一哈希表O(1),第二,二分O(log n) 一般可以分为语言自带的容器哈希和用数组模拟的简易哈希。 最简单的比如数组模拟字符存储,只要开26个c

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig