R数据分析:生存分析的做法与解释续

2024-04-14 07:32

本文主要是介绍R数据分析:生存分析的做法与解释续,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天更新续文,上篇文章写了生存曲线的画法,但是留了一个问题没有解决,就是Kaplan-Meier生存曲线实际上仅仅把病人分为两组做了生存率随时间的比较,但是它并没有考虑协变量。R数据分析:生存分析的做法和结果解释

那么,我们做研究的时候,你发现了两个组的生存情况不一样,是不是下一步你就要想看看到底是那些因素影响了我们的生存情况。今天的文章就尝试着解决这么样问题。

问题描述

我们今天要关注的问题变了,我们会想要探讨很多因素造成的病人生存情况的差异:

比如,我们今天想来探究一下究竟是哪些因素会影响结肠癌患者的生存情况,我们的备选因素有3个,分别是性别sex,治疗方法rx和癌肿附着情况adhere(是否附着到其他器官,2分类变量)。

那么数据集依然是survival包自带的colon数据集。

R数据分析:生存分析的做法与解释续

 

对于我们的研究问题,我可以很自然地想要做亚组分析,穷尽所有亚组来看差异,首先我们依然用Kaplan-Meier方法拟合生存曲线:

require("survival")
fit2 <- survfit( Surv(time, status) ~ sex + rx + adhere,data = colon )

R数据分析:生存分析的做法与解释续

 

输出其实挺混乱的,我们依然可视化看看:

ggsurv <- ggsurvplot(fit2, fun = "event", conf.int = TRUE,ggtheme = theme_bw())ggsurv$plot +theme_bw() + theme (legend.position = "right")+facet_grid(rx ~ adhere)

R数据分析:生存分析的做法与解释续

 

通过亚组分析的结果我们可以知道男女的生存情况在所有情况下都有差异,但是局限性在于我们还是不能知道不同的治疗方法或者癌肿附着是不是会影响病人的生存,因为我们的图都是在分组展示不同性别的差异。

当然了,你可以改公式自己再跑跑看,但这不是我们理想的方法。

风险比例模型

The Cox proportional-hazards model (Cox, 1972) is essentially a regression model commonly used statistical in medical research for investigating the association between the survival time of patients and one or more predictor variables.

Cox回归又称为比例风险模型,Cox回归比寿命表法和Kaplan-Meier法的应用范围更广,它能够同时考虑多个自变量对生存时间分布的影响。这个就是它最重要的优点。

想理解这个模型,必须要理解风险函数(上篇文章有提)Cox风险比例模型的基本形式如下:

R数据分析:生存分析的做法与解释续

 

上面的式子,一句话就是:t时间的风险等于基线风险乘以所有预测变量造成的风险的指数幂。上面式子做一个简单的数学变换就可以得到以lnHR为因变量,自变量为研究变量的线性组合的形式:

R数据分析:生存分析的做法与解释续

 

那么,写到这儿,大家肯定就知道了风险比例模型中自变量系数的解释,就是自变量每改变一个单位,风险比的自然对数的改变量。

那么具体到我们的例子,我们可以做一个风险比例模型瞅瞅:

fit.coxph <- coxph(Surv(time, status) ~ sex + rx + adhere, data = colon)
summary(fit.coxph)

R数据分析:生存分析的做法与解释续

 

从输出结果看性别对死亡风险没有显著影响,图中的两种治疗方案相对于参照组都可以降低死亡风险,癌肿附着会增加死亡风险。

具体解释为:相对于观察组,施加rxlev治疗和relev+5FU治疗的病人发生结局(死亡)的风险会分别是基线风险的0.97和0.64,有癌肿附着的病人发生结局(死亡)的风险会是基线的1.34倍。

我们还可以画出变量对死亡风险影响的森林图:

ggforest(fit.coxph, data = colon)

R数据分析:生存分析的做法与解释续

 

当然了这个森林图对我们这个例子并没有啥用哈,仅供看官一乐。

小结

今天主要给大家写了Cox风险比例模型的做法和解释,感谢大家耐心看完,自己的文章都写的很细,代码都在原文中,希望大家都可以自己做一做,请关注后私信回复“数据链接”获取所有数据和本人收集的学习资料。如果对您有用请先收藏,再点赞转发。

也欢迎大家的意见和建议。

如果你是一个大学本科生或研究生,如果你正在因为你的统计作业、数据分析、论文、报告、考试等发愁,如果你在使用SPSS,R,Python,Mplus, Excel中遇到任何问题,都可以联系我。因为我可以给您提供最好的,最详细和耐心的数据分析服务。

如果你对Z检验,t检验,方差分析,多元方差分析,回归,卡方检验,相关,多水平模型,结构方程模型,中介调节,量表信效度等等统计技巧有任何问题,请私信我,获取最详细和耐心的指导。

If you are a student and you are worried about you statistical #Assignments, #Data #Analysis, #Thesis, #reports, #composing, #Quizzes, Exams.. And if you are facing problem in #SPSS, #R-Programming, #Excel, Mplus, then contact me. Because I could provide you the best services for your Data Analysis.

Are you confused with statistical Techniques like z-test, t-test, ANOVA, MANOVA, Regression, Logistic Regression, Chi-Square, Correlation, Association, SEM, multilevel model, mediation and moderation etc. for your Data Analysis...??

Then Contact Me. I will solve your Problem...

加油吧,打工人!

往期内容:

R数据分析:混合效应模型实例

R数据分析:倾向性评分匹配实例操作

R数据分析:一个真实的数据分析实例

R数据分析:ROC曲线与模型评价实例

R数据分析:线性回归的做法和优化实例

这篇关于R数据分析:生存分析的做法与解释续的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902441

相关文章

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An

Spring定时任务只执行一次的原因分析与解决方案

《Spring定时任务只执行一次的原因分析与解决方案》在使用Spring的@Scheduled定时任务时,你是否遇到过任务只执行一次,后续不再触发的情况?这种情况可能由多种原因导致,如未启用调度、线程... 目录1. 问题背景2. Spring定时任务的基本用法3. 为什么定时任务只执行一次?3.1 未启用

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入