全景剖析SSD SLC Cache缓存设计原理-2

2024-04-14 05:36

本文主要是介绍全景剖析SSD SLC Cache缓存设计原理-2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

四、SLC缓存对SSD的寿命是否有优化?

当使用QLC或TLC NAND闪存并将其切换到SLC模式进行写入时,会对闪存的寿命产生以下影响:

  1. 短期寿命提升:

    • SLC模式下,每个存储单元仅存储一个比特数据,相对于QLC或TLC来说,每个单元的状态变化更少,因此每次写入操作对单元的物理损伤较小。

    • 由于SLC模式的单元只需要区分两种电荷状态,其电压窗口更大,信号质量更好,这降低了误码率,增强了数据的稳定性,从而减少了需要进行纠错操作的次数,进一步减轻了单元的负担。

    • 结果是,在SLC模式下进行写入时,NAND闪存的擦写次数(P/E cycles)理论上会显著增加,表现为短期的寿命提升

  1. 长期总体寿命折损:

    • 尽管SLC模式下单个单元的寿命更长,但需要注意的是,SLC模式实际上是利用了一部分QLC或TLC闪存的空间来模拟SLC的行为。这意味着原本设计为存储多位数据的单元现在只能存储一位数据,相当于牺牲了存储密度

    • 因此,为了维持相同的总存储容量,SSD控制器必须使用更多的物理单元来对应同样的逻辑容量,这意味着在SLC模式下写入相同的数据量,实际上会消耗更多物理单元的擦写次数。

    • 例如,如果一个QLC单元在SLC模式下只用作一个SLC单元,那么为了达到同样的存储容量,需要使用四倍数量的QLC单元。虽然单个单元的擦写次数增加了,但由于使用的单元总数也相应增加,长期来看,整体的闪存寿命可能并未得到显著改善,甚至可能因为单元数量的增加而导致更早达到总的P/E周期限制。

  1. 动态调整与缓存策略

    • 实际上,现代SSD在设计时通常采用SLC缓存策略,即利用一部分QLC或TLC NAND以SLC模式工作作为高速写入缓冲区。这种设计允许在短时间内以SLC模式快速接收和暂存新数据,然后再在后台以QLC或TLC模式将这些数据异步迁移到主存储区域。

    • 这种动态调整机制避免了持续以牺牲存储密度的方式运行整个闪存,而是仅在需要加速写入时短暂启用SLC模式。这样既利用了SLC模式下的高速写入优势,又避免了长期对闪存寿命造成过大影响。

所以说,将QLC或TLC NAND切换到SLC模式进行写入可以短期内提高单元的耐用性,若持续以此模式运行整个闪存,由于牺牲存储密度导致的单元数量增加,可能会导致整体闪存寿命并未得到显著提升,甚至可能因为单元数量的增加而提前达到总的P/E周期限制。然而,通过合理运用SLC缓存策略,可以在不显著影响整体寿命的前提下,有效提升写入性能。

因此,实际SSD产品中,SLC模式通常作为一种智能缓存技术被用来临时提升写入速度,而非永久改变整个闪存的工作模式。

五、业内对SLC缓存的优化方案

1.Solidigm提出了“Fast Lane” SLC缓存方案

在传统SSD中,大多数数据在短时间内会从SLC缓存迁移到QLC主存储区。一旦数据被转移到QLC,现有的缓存机制并不具备智能将这些数据重新带回SLC的能力。换言之,一旦数据离开SLC,其后续的访问速度将取决于QLC的性能,而不会因为其访问频率或重要性变化而被重新考虑放入SLC缓存。

图片

“Fast Lane”提出的缓存解决方案同样使用SLC作为写缓冲区,但在此基础上引入了智能缓存机制。这种智能缓存的目标是尽可能多地、尽可能长久地将“热”数据(即访问频率高、近期活跃或对性能敏感的数据)保留在SLC中。这意味着该方案不仅仅是被动地利用数据在SLC中的偶然存在,而是主动监控数据访问模式,识别出“热”数据,并确保这些数据即使在被写入一段时间后,仍能被优先保留在SLC缓存中,以提供持续的高性能访问。

图片

存储驱动程序在识别出数据的“热”、“冷”状态后,会将这些信息以“提示”(hints)的形式传递给SSD固件。SSD固件是嵌入在SSD硬件中的专用软件,负责控制SSD的内部操作,包括数据的读写、缓存管理、错误纠正等。通过接收驱动程序提供的数据热度提示,固件获得了关于数据重要性与访问需求的额外知识。

接收到数据热度提示的SSD固件,会据此调整数据在不同存储介质中的存放策略。具体来说,固件会确保“热”数据存储在“快”介质中,而“冷”数据则存放在“慢”介质中。这里的“快”介质通常指SSD中的高速缓存区域,如SLC(Single-Level Cell)存储层,其特点是读写速度快、延迟低,但成本较高;相反,“慢”介质通常指SSD的主存储区域,如QLC(Quad-Level Cell)存储层,其存储密度高、成本较低,但读写速度和延迟相对较高。

相比传统缓存策略,随着SSD填充率增加、缓存空间相应减小,Fast Lane策略下重要数据快速可用的概率反而更高。原因在于传统策略通常仅基于数据的写入时间(即最近写入的数据优先保留在缓存中)进行缓存决策,这种简单粗放的方法往往无法精准识别出真正重要的“热”数据。在SSD使用过程中,随着可用缓存空间不断缩小,传统策略的不足愈发明显,而Fast Lane通过智能识别和优先保留重要数据,即使在缓存空间有限的情况下也能确保更高的缓存命中率。

图片

实际测试结果显示,当SSD填充率达到50%时,采用Fast Lane缓存策略的系统在QD1(队列深度为1)随机读取速度上,相比于未采用此策略的同类系统,性能提升可达120%。QD1随机读取速度是衡量系统响应速度的一个关键指标,其显著提升说明Fast Lane有效地解决了高填充率下缓存空间不足导致的性能瓶颈问题,极大地增强了系统的即时响应能力和用户体验。

不过,需要注意,Solidigm这个方案需要软件驱动一起配合,整体方案可能对于普通用户不是特别友好。

2.三星基于强化学习(RL) SLC缓存管理技术

这是来自一篇来自三星的之前发布的论文内容,论文详细介绍了基于强化学习(RL)的SLC缓存管理技术,旨在改善使用QLC NAND闪存的固态硬盘(SSD)的写入性能

图片

设计混合SSD时需要考虑两个重要因素:

  • SLC缓存大小:需要权衡容量损失与SLC-to-QLC迁移开销。SLC块容量小于QLC块,SLC区域越大,总容量损失越多。但若SLC区域过小,将导致迁移成本增加、写请求延迟增大及写放大率提高。因此,SLC缓存大小应根据工作负载特征和SSD内部行为(如迁移成本)动态调整。

  • 热/冷分离阈值:考虑到SLC-to-QLC迁移成本,应尽量只在SLC区域写入频繁更新的“热”数据,其他“冷”数据直接写入QLC区域。区分热/冷数据需考虑请求数据大小、目标地址、更新频率等因素。简单启发式方法是基于数据大小,认为小数据更可能为热数据。阈值设定会影响写入SSD缓存的数据量,进而影响性能。

由于现有技术采用固定、经验性设定的参数且不支持运行时调整,论文提出了一种基于强化学习的SLC缓存管理技术。通过观察工作负载模式和混合SSD内部状态,动态确定最优SLC缓存参数,以最大化SSD效率。实验表明,该技术平均可将写吞吐量和写放大因子分别提高77.6%和20.3%

图片

根据论文内容介绍,RL技术更动态地调整SLC缓存大小和热/冷分离阈值。在PC工作负载(频繁更新数据多)中,RL技术分配的SLC块数少于UST,但保持较高的阈值(如512 KB),以尽可能长时间存储热数据。RL技术降低了QLC-to-QLC或SLC-to-SLC垃圾回收开销,与UST相比,其迁移和垃圾回收成本降低65.2%,与DWA相比,QLC写入开销减少。

图片

参考资料:

1.HotStorage20:《Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write Performance》

2.Solidigm 2023 FMS:《Evolution of Client SSD Architecture》

3.https://driveshero.com/ssd-dram-cache-vs-slc-cache/

4.https://sabrent.com/blogs/storage/slc-caching

如果您看完有所受益,欢迎点击文章底部左下角“关注”并点击“分享”、“在看”,非常感谢!

精彩推荐:

  • 存储革新:下一代低功耗PCM相变存储器

  • 多层磁介质让HDD容量翻倍,可超过120TB

  • 下一代分层存储方案:CXL SSD

  • 字节跳动入局存储内存SCM

  • 解读“CFMS中国闪存市场峰会”存储技术看点

  • 首个业内DNA存储技术规范发布

  • 如何突破SSD容量提升的瓶颈?

  • 固态存储是未来|浅析SSD架构的演进与创新技术

  • 论文解读:NAND闪存中读电压和LDPC纠错码的高效设计

  • 华为新发布磁电存储“王炸”,到底是什么?

  • SSD LDPC软错误探测方案解读

  • 关于SSD LDPC纠错能力的基础探究

  • 存储系统如何规避数据静默错误?

  • PCIe P2P DMA全景解读

  • 深度解读NVMe计算存储协议

  • 对于超低延迟SSD,IO调度器已经过时了吗?

  • 浅析CXL P2P DMA加速数据传输的原理

  • NVMe over CXL技术如何加速Host与SSD数据传输?

  • 浅析LDPC软解码对SSD延迟的影响

  • 为什么QLC NAND才是ZNS SSD最大的赢家?

  • SSD在AI发展中的关键作用:从高速缓存到数据湖

  • 浅析不同NAND架构的差异与影响

  • SSD基础架构与NAND IO并发问题探讨

  • 字节跳动ZNS SSD应用案例解析

  • CXL崛起:2024启航,2025年开启新时代

  • NVMe SSD:ZNS与FDP对决,你选谁?

  • 浅析PCI配置空间

  • 浅析PCIe系统性能

  • 存储随笔《NVMe专题》大合集及PDF版正式发布!

图片

如果您也想针对存储行业分享自己的想法和经验,诚挚欢迎您的大作。
投稿邮箱:Memory_logger@163.com (投稿就有惊喜哦~)

《存储随笔》自媒体矩阵

图片

更多存储随笔科普视频讲解,请移步B站账号

图片

如您有任何的建议与指正,敬请在文章底部留言,感谢您不吝指教!如有相关合作意向,请后台私信,小编会尽快给您取得联系,谢谢!

这篇关于全景剖析SSD SLC Cache缓存设计原理-2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902195

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

Redis与缓存解读

《Redis与缓存解读》文章介绍了Redis作为缓存层的优势和缺点,并分析了六种缓存更新策略,包括超时剔除、先删缓存再更新数据库、旁路缓存、先更新数据库再删缓存、先更新数据库再更新缓存、读写穿透和异步... 目录缓存缓存优缺点缓存更新策略超时剔除先删缓存再更新数据库旁路缓存(先更新数据库,再删缓存)先更新数

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外