Day:007(4) | Python爬虫:高效数据抓取的编程技术(scrapy框架使用)

本文主要是介绍Day:007(4) | Python爬虫:高效数据抓取的编程技术(scrapy框架使用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Scrapy 中 Downloader 设置UA

        下载中间件是Scrapy请求/响应处理的钩子框架。这是一个轻、低层次的应用。
        通过可下载中间件,可以处理请求之前和请求之后的数据。
        如果使用下载中间件需要在Scrapy中的setting.py的配置DOWNLOADER_MIDDLEWARES才可以使用,

比如:

DOWNLOADER_MIDDLEWARES = {'myproject.middlewares.CustomDownloaderMiddleware': 543,
}

开发UserAgent下载中间件

问题
每次创建项目后,需要自己复制UserAgent到settings,比较繁琐



解决方案
开发下载中间件,设置UserAgent

代码 

from fake_useragent import UserAgentclass MyUserAgentMiddleware:def process_request(self, request,spider):request.headers.setdefault(b'UserAgent', UserAgent().chrome)

三方模块

pip install scrapy-fake-useragent==1.4.4

配置模块到Setting文件 

DOWNLOADER_MIDDLEWARES = {'scrapy.downloadermiddlewares.useragent.User
AgentMiddleware': None,'scrapy.downloadermiddlewares.retry.RetryMid
dleware': None,'scrapy_fake_useragent.middleware.RandomUser
AgentMiddleware': 400,'scrapy_fake_useragent.middleware.RetryUserA
gentMiddleware': 401,
}

Scrapy 中 Downloader 设置代理 

        爬虫设置代理就是让别的服务器或电脑代替自己的服务器去获取数据

爬虫代理原理

代码

通过 request.meta['proxy'] 可以设置代理,如下: 

class MyProxyDownloaderMiddleware:def process_request(self, request,spider):# request.meta['proxy']='http://ip:port'# request.meta['proxy']='http://name:pwd@ip:port'request.meta['proxy']='http://139.224.211.212:8080'

下载中间件实战-Scrapy与Selenium结合 

        有的页面反爬技术比较高端,一时破解不了,这时我们就是可以考虑使用selenium来降低爬取的难度。

        问题来了,如何将Scrapy与Selenium结合使用呢?

        思考的思路: 只是用Selenium来帮助下载数据。因此可以考虑通过下载中间件来处理这块内容。

具体代码如下:

Spider文件

@classmethod
def from_crawler(cls, crawler, *args,**kwargs):spider = super(BaiduSpider,cls).from_crawler(crawler, *args, **kwargs)spider.chrome =webdriver.Chrome(executable_path='../tools/c
hromedriver.exe')crawler.signals.connect(spider.spider_closed, signal=signals.spider_closed)# connect里的参数# 1. 处罚事件后用哪个函数处理# 2. 捕捉哪个事件return spiderdef spider_closed(self, spider):spider.chrome.close()

middlewares文件 

def process_request(self, request, spider):  spider.chrome.get(request.url)html = spider.chrome.page_sourcereturn HtmlResponse(url =request.url,body = html,request =
request,encoding='utf-8')

Scrapy保存数据到多个数据库

目标网站:中国福利彩票网 双色球往期数据

 阳光开奖 (cwl.gov.cn)https://www.cwl.gov.cn/ygkj/wqkjgg/

代码

class MongoPipeline:def open_spider(self, spider):self.client = pymongo.MongoClient()self.ssq = self.client.bjsxt.ssqdef process_item(self, item, spider):if item.get('code') =='2022086':self.ssq.insert_one(item)return itemdef close_spider(self, spider):self.client.close()# pip install pymysql==1.0.2
import pymysql
from scrapy.exceptions import DropItem
class MySQLPipeline:def open_spider(self, spider):# 创建数据库连接self.client =
pymysql.connect(host='192.168.31.151',port=3
306,user='root',password='123',db='bjsxt',ch
arset='utf8')# 获取游标self.cursor = self.client.cursor()def process_item(self, item, spider):if item.get('code') =='2022086':raise DropItem('2022086 数据已经在
mongo保存过了')# 写入数据库SQLsql = 'insert into t_ssq(id,code,red,blue) values (0,%s,%s,%s)'# 写的数据参数args =(item['code'],item['red'],item['blue'])# 执行SQLself.cursor.execute(sql,args)# 提交事务self.client.commit()return itemdef close_spider(self, spider):self.cursor.close()self.client.close()

Scrapy案例 

需求: 爬取二手房数据,要求包含房屋基本信息与详情 

网址: https://bj.lianjia.com/ershoufang/

 爬虫的分布式思维与实现思路

 

        scrapy-redis实现分布式,其实从原理上来说很简单,这里为描述方便,我们把自己的核心服务器称为master,而把用于跑爬虫程序的机器称为slave 

        我们知道,采用scrapy框架抓取网页,我们需要首先给定它一些start_urls,爬虫首先访问start_urls里面的url,再根据我们的具体逻辑,对里面的元素、或者是其他的二级、三级页面进行抓取。而要实现分布式,我们只需要在这个starts_urls里面做文章就行了

        我们在master上搭建一个redis数据库(注意这个数据库只用作url的存储),并对每一个需要爬取的网站类型,都开辟一个单独的列表字段。通过设置slave上scrapy-redis获取url的地址为master地址。这样的结果就是,尽管有多个slave,然而大家获取url的地方只有一个,那就是服务器master上的redis数据库

        并且,由于scrapy-redis自身的队列机制,slave获取的链接不会相互冲突。这样各个slave在完成抓取任务之后,再把获取的结果汇总到服务器上

好处

        程序移植性强,只要处理好路径问题,把slave上的程序移植到另一台机器上运行,基本上就是复制粘贴的事情

分布式爬虫的实现

  • 使用三台机器,一台是windows,两台是centos,分别在两台机器上部署scrapy来进行分布式抓取一个网站
  •  windows的ip地址为 192.168.xxx.XXX ,用来作为redis的master端,centos的机器作为slave
  • master的爬虫运行时会把提取到的url封装成request放到redis中的数据库:“dmoz:requests”,并且从该数据库中提取request后下载网页,再把网页的内容存放到redis的另一个数据库“dmoz:items”
  • slave从master的redis中取出待抓取的request,下载完网页之后就把网页的内容发送回master的redis
  • 重复上面的3和4,直到master的redis中的“dmoz:requests”数据库为空,再把master的redis中的“dmoz:items”数据库写入到mongodb中
  • master里的reids还有一个数据“dmoz:dupefilter”是用来存储抓取过的url的指纹(使用哈希函数将url运算后的结果),是防止重复抓取的

scrapy-redis框架的安装 

        一个三方的基于redis的分布式爬虫框架,配合scrapy使用,让爬虫具有了分布式爬取的功能

github地址:

https://github.com/rmax/scrapy-redis

 

安装 

 pip install scrapy-redis==0.7.3

爬虫分布式-搭建Main端Redis

安装Redis

        Redis是有名的NoSql数据库,一般Linux都会默认支持。但在Windows环境中,目前也有支持版本。下载地址也可以GitHub中获取(https://github.com/microsoftarchive/redis/releases)

  • 下载安装包 
  • 下载压缩版,解压即可
  • 修改配置文件 redis.windows.conf ,配置redis参数
    # bind 127.0.0.1 =::1 允许远程访问
    protected-mode no 关闭私有模式
    

     

开启redis服务 

redis-server redis.windows.conf

爬虫分布式-搭建Slave端环境配置

Python环境

python安装与使用的前置环境 

yum install gcc* zlib* libffi-devel bzip2-
devel xz-devel openssl* -y

下载 Python3

yum install wget -y
wget
https://www.python.org/ftp/python/3.9.4/Python-3.9.4.tgz

注意
可在python官网https://www.python.org/downloads/查找最新版本python复制链接,以下文件夹名称均需要替换为对应版本名称

技巧
理论是服务器安装的Python版本与运行环境版本一致。但是也要看服务器是否支持!!

安装 

tar -xf Python-3.9.4.tgz # 解压
cd Python-3.9.4
./configure prefix=/usr/local/python3 --
enable-optimizations #编译
make install # 安装
export PATH=$PATH:/usr/local/python3/bin/ #
配置环境变量
# ~/.bash_profile

安装scrapy
安装scrapy的环境 

提示
如果twisted安装不成功,可以考虑单独下载安装
https://twisted.org/

安装scrapy

 pip3 install scrapy

注意
为了避免安装失败,修改pypi数据源
找到下列文件


~/.pip/pip.conf


在上述文件中添加或修改:


[global]
index-url =http://mirrors.aliyun.com/pypi/simple/


[install]
trusted-host=mirrors.aliyun.com


安装 scrapy-redis 

pip3 install scrapy-redis

 安装 scrapy-fake-useragent

pip3 install scrapy-fake-useragent

这篇关于Day:007(4) | Python爬虫:高效数据抓取的编程技术(scrapy框架使用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902144

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。