清华大学矣晓沅:“九歌”——基于深度学习的中国古典诗歌自动生成系统

本文主要是介绍清华大学矣晓沅:“九歌”——基于深度学习的中国古典诗歌自动生成系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

授权自AI科技大本营(ID:rgznai100)

本文共2714字,建议阅读6分钟。
本文为你介绍清华自然语言处理与社会人文计算实验室的自动作诗系统——“九歌”及其相关的技术方法和论文。


[ 导读 ]近年来人工智能与文学艺术的结合日趋紧密,AI 自动绘画、自动作曲等方向都成为研究热点。诗歌自动生成是一项有趣且具有挑战性的任务。在本次公开课中, 讲者将介绍清华自然语言处理与社会人文计算实验室的自动作诗系统,“九歌”,及其相关的技术方法和论文。


分享嘉宾:


矣晓沅,清华大学计算机系在读硕士, 导师为孙茂松教授。主要从事自然语言处理、文本生成方向的研究。研究工作在IJCAI、CoNLL、EMNLP等会议发表。


公开课回放地址:

http://www.mooc.ai/open/course/545?=Leiphone


分享主题:“九歌”——基于深度学习的中国古典诗歌自动生成系统


分享提纲:


  • 任务背景及“九歌” 作诗系统简介

  • 基于显著性上下文机制的诗歌生成

  • 基于工作记忆模型的诗歌生成

  • 基于互信息的无监督风格诗歌生成


我们将其分享内容整理如下:


人工智能的概念提出不久后,许多科学家试图将人工智能与日常生活相结合。在 NLP 领域,我们熟悉的有机器翻译、专家系统和对话系统,而诗歌属于人类语言中高度凝练,高度艺术化的体现,几十年以前便有科学家试图让 AI 具备创作诗歌的能力。

关于自动诗歌生成,我们的应用主要体现在:


  • 娱乐场景——老百姓可以轻易通过诗意的方式去表达自己的情感;

  • 诗词教育——了解诗词中的关键词、意象、押韵等元素是如何在诗词中起作用的。

  • 文学研究——实验中关于词频、意象之间的关系的发现,能给文学研究一定的启发作用。

  • 启发其他类型文本的生成(歌词、小说……)。


诗歌的特点是形式上高度凝练、简洁、节奏感强、语义丰富,因此我们认为它是自动分析、理解和生成文本的理想切入点。


关于自动诗歌的生成,业界的研究主要经历了三个阶段:


640?wx_fmt=png


我们实验室是在 2016 年初开始做这件事情的,我们的九歌系统采用了最新的深度学习技术,结合多个为诗歌生成专门设计的不同模型,基于超过 30 万首的诗歌进行训练学习,能够产生集句诗、绝句、藏头诗、宋词等不同体裁的诗歌。


640?wx_fmt=png


下面我会给大家介绍九歌系统背后的几个重要模型:


基于显著性上下文机制的诗歌生成


第一个模型被称作“基于显著性上下文机制的诗歌生成”,在这之前,针对中国古典诗歌自动生成的一些工作在新颖性、韵律和关键词插入有了显著提升,然而在上下文关联性方面还有所欠缺。前期的试验中,我们发现这也是自动诗歌生成系统的硬伤部分。


640?wx_fmt=png


以这首诗为例子,诗歌主要以"春风"为关键词,通过 2016 的某个模型进行生成后,我们发现上下文的连贯性非常差。明明前两句描述的是比较和煦的景色,后两句却突然转变成比较悲怆的边塞风格。也就是说,前半部分与后半部分的主题、风格和内容完全不一致,而且中间也缺乏必要的过渡,关联性较差。


为什么模型会出现这样的问题呢?我们认为是因为之前的模型存在两种不合理的假设。


第一种是认为一首诗的生成过程中,历史信息可以被一个单独的历史向量存储和利用。


640?wx_fmt=png


简单来说,就是每生成一句诗,便将这句诗的句向量压缩到历史向量中,以此类推,不停更新历史向量然后生成诗句。


这个假设会带来很多问题:


  • 单独的向量的 capasity 并不高,无法将大量的句子和语义给保存下来。

  • 语义较好的词和无明确语义的词(如停用词等)被混到了一起。


第二种不合理的假设认为 seq2seq 机制可以从一个无限长的历史序列里探索和利用历史信息。


640?wx_fmt=png


这种假设的好处是可以有区分性地选择历史信息,忽略虚词。然而随之而来的问题是,当诗词的句子数过多时,比如以某宋词的第十五句作为例子,那么就需要将前面的十四句先拼成很长的序列作为输入,这将导致性能的大幅下降。


针对以上提到的两项问题,我们提出了 salient clue 机制,通过机制实现更优质的上下文捕捉。我们的内部设计逻辑是忽略句子里语义表现较差的部分,如虚词、停用词等,从而选择语义明确的部分来形成历史向量,来指导下文的生成。


更多关于 salient clue 机制的运作原理,请回看视频 00:13:25 处:

http://www.mooc.ai/open/course/545?=Leiphone


640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png


无论是在自动评测还是人工评测上,我们的结果与之前的模型相比,效果有了显著的提升。


640?wx_fmt=png


在人工评测的部分,加了 style 的诗歌在"诗意"环节的表现较差,这是因为被强制控制风格以后,最终生成的用词多样性也会变差。


640?wx_fmt=png


左边是风格的人工评测识别矩阵,对角线上的数字越大,说明我们的风格控制准确率越高,可以看到,我们的结果在 70%—90% 之间。右边是另一项人工评测结果,目的是要检测模型选择的字是否靠谱,我们请了一些专家进行人工挑字,与模型进行对比,结果显示重合率在 50% 左右,有了明显的提升。


由于模型较基础,所以存在的问题不少:


  • 字词的选择较生硬;

  • 诗歌流畅性与诗意性受到影响。


基于工作记忆模型的诗歌生成


这个模型借鉴了认知心理学的原理——"工作记忆"。


人们认为怎样的文章才具备连贯性呢?当读者读到一个新的句子时,如果这个句子能和存储在读者大脑工作记忆中的内容,或者文章的主题与大意建立关联,那么读者就认为新读到的这个句子和上文是连贯的。


有鉴于此,我们便提出了"工作记忆模型",该模型整体由三种不同的 Memory 组成:


一、 Topic Memory


640?wx_fmt=png


支持输入多个关键词,可以将用户输入的词单独保存在模型里,这里主要起的是约束诗歌整体主旨的角色。由于是独立保存,所以对关键词的输入顺序不做要求,是一项对用户非常友好的行为。


二、 History Memory


640?wx_fmt=png


与之前提到的 salient clue 机制相类似。


三、 Local Memory


640?wx_fmt=png


主要保存诗歌的前一个句子,因为中国古典诗歌的相邻句子往往有非常强的关联性。


更多关于工作记忆模型的运作机制,请回看视频 00:27:25 处:

http://www.mooc.ai/open/course/545?=Leiphone

 640?wx_fmt=png

640?wx_fmt=png

  640?wx_fmt=png

640?wx_fmt=png


我们的实验分别生成了律诗、宋词和歌词,实验结果与不同模型相比,都有了很大的提升。


640?wx_fmt=png


这是一张 perplexity 图,纵轴是 perplexity,横轴是诗歌的句子数目,不同颜色的线则表示 History Memory 的槽数。


640?wx_fmt=png


一首诗歌的句子数目越多,整体的 perplexity 就越大,因为句子数目越多,上下文的关联性越难被确认,导致不确定性越大。同时我们还发现,History Memory 的槽数越多,perplexity 就越小,不确定性也随着变小。


640?wx_fmt=png

640?wx_fmt=png


模型的成功之处,在于提升了读取词的可解释性和表达的灵活性。


基于互信息的无监督风格诗歌生成


针对第一篇文章工作中存在的风格控制问题,我们又做了一项「基于互信息的无监督风格」的工作。众所周知,中国古诗具有不同的风格表达,其中三个最有代表性的分别是:边塞、闺怨和山水田园。


我们希望我们的模型可以做到以下几个要求:


  • 给出一个关键词,就能生成不同风格的诗歌。

  • 通过无监督的方式实现这个功能。

  • 生成的诗在其他指标上尽量减少损失或者没有损失(流畅性、通顺性……)


更多关于无监督风格生成模型的运作机制,请回看视频 00:36:17 处:

http://www.mooc.ai/open/course/545?=Leiphone


640?wx_fmt=png640?wx_fmt=png640?wx_fmt=png640?wx_fmt=png


实验中我们设置了 10 种不同的风格,每种风格分别生成一组诗,最后我们统计诗歌的词频。 


640?wx_fmt=png


右边是人类评测的结果,对角线越明显,说明风格的识别率越高。一下生成十种风格的诗歌,还能取得这么高的识别率,说明实验的结果非常好。


640?wx_fmt=png


以上是生成的一些诗歌例子。


最后,欢迎大家前往试用我们的系统,多多给我们提宝贵的意见,后续我们会根据大家的反馈持续改进我们的系统。


系统地址:https://jiuge.thunlp.cn//


640?wx_fmt=jpeg

640?wx_fmt=jpeg

这篇关于清华大学矣晓沅:“九歌”——基于深度学习的中国古典诗歌自动生成系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/901636

相关文章

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties