Cesium.js--》探秘Cesium背后的3D模型魔力—加载纽约模型

2024-04-14 00:12

本文主要是介绍Cesium.js--》探秘Cesium背后的3D模型魔力—加载纽约模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天简单实现一个Cesium.js的小Demo,加强自己对Cesium知识的掌握与学习,先简单对这个开源库进行一个简单的介绍吧!

Cesium 是一个开源的地理空间可视化引擎,用于创建基于 Web 的三维地球应用程序。它允许开发人员在网页上呈现高度可视化的地球数据,包括地形、卫星影像、建筑物、地理信息系统 (GIS) 数据等。其提供了强大的 JavaScript 库和 API,使开发人员可以轻松地构建交互式、高性能的地球应用。

总的来说,Cesium 是一个强大的工具,可以帮助开发者构建高度交互和可视化的地球应用,适用于各种领域,包括地理信息系统、虚拟旅游、航空航天等。接下来开始正式的学习!

目录

项目搭建

添加纽约建筑模型

划分城市区域

设置地图标记

设置模型运动轨迹


项目搭建

本案例还是借助框架书写cesium项目,借用vite构建工具搭建vue项目,vite这个构建工具如果有不了解的朋友,可以参考我之前对其讲解的文章:vite脚手架的搭建与使用。搭建完成之后,用编辑器打开该项目,在终端执行 npm i 安装一下依赖即可。

接下来简单的介绍一下Cesium,该开源库在vite官网社区插件中已经给出了相关的链接,如下:

社区插件链接中提供了许多vite工具集成的插件,并提供了相关插件的链接,cesium如下:

我们点击该 链接 ,就跳转到cesium相关介绍的github页面,这里提供了该插件的下载命令以及相关的配置使用介绍,下载命令如下,直接复制即可:

npm i cesium vite-plugin-cesium vite -D

根据官网的介绍,我们需要在vite.config.js中进行相应的代码配置,如下:

import { defineConfig } from 'vite'
import vue from '@vitejs/plugin-vue'
// 导入cesium插件
import cesium from 'vite-plugin-cesium';export default defineConfig({plugins: [vue(), cesium()], // 调用cesium插件
})

配置完成之后,我们回到App根组件,然后我们引入cesium的全局对象进行测试,如下:

<template><div id="cesiumContainer"></div>
</template><script setup>
import { ref, onMounted } from 'vue'
import * as Cesium from 'cesium';onMounted(() => {const viewer = new Cesium.Viewer('cesiumContainer', { infoBox: false });});
</script><style scoped lang="scss">
#cesiumContainer {width: 100%;height: 100vh;overflow: hidden;
}
</style>

运行我们的项目,打开浏览器就可以看到我们下面的一个地球样式,我们也可以对其进行相关操作

当然我们也可以查看 https://cesium.com/  查阅相关Cesium相关的知识:

通过翻阅 Cesium相关API进行查看相应的使用    提供了相应的解释:

我们对代码进行如下修改,可以查看到相应的地形地貌:

onMounted(() => {let custom = new Cesium.ArcGisMapServerImageryProvider({url: 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer'});const viewer = new Cesium.Viewer('cesiumContainer', { infoBox: false, // 关闭信息窗口imageryProvider: custom, // 自定义图层terrain: Cesium.Terrain.fromWorldTerrain(), // 开启地形});
});

当然我们也可以设置一开始聚焦的相机位置:

onMounted(() => {let custom = new Cesium.ArcGisMapServerImageryProvider({url: 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer'});const viewer = new Cesium.Viewer('cesiumContainer', { infoBox: false, // 关闭信息窗口imageryProvider: custom, // 自定义图层terrain: Cesium.Terrain.fromWorldTerrain(), // 开启地形});viewer.camera.setView({destination: Cesium.Cartesian3.fromDegrees(116.2317, 39.5427, 200), // 坐标orientation: {heading: Cesium.Math.toRadians(90), // 方向pitch: Cesium.Math.toRadians(25), // 倾斜}})
});

定位的坐标方向,画面还是挺壮观的。(我爱说实话!)

添加纽约建筑模型

根据上文我们了解到的cesium的基本操作,接下来我们拿纽约这个地方进行举例,首先我们先掌握如何加载模型,我们打开 cesium官网 ,进行一个简单的注册,该官网和github联动的,和github关联一下即可,注册完毕会进入我们这一个控制台,如下:

因为纽约模型,cesium官网是提供的,我们点击Asset Depot选择相应的模型添加到My Assets:

选择我们相应添加的模型,复制代码到我们的项目即可,非常方便:

我们在场景加载的时候相机直接定位到纽约的位置,然后加载纽约的模型,如下:

onMounted(async () => {let custom = new Cesium.ArcGisMapServerImageryProvider({url: 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer'});const viewer = new Cesium.Viewer('cesiumContainer', { infoBox: false, // 关闭信息窗口imageryProvider: custom, // 自定义图层terrain: Cesium.Terrain.fromWorldTerrain(), // 开启地形});viewer.camera.setView({destination:new Cesium.Cartesian3(1332761, -4662399, 4137888),orientation:{heading: 0.60,pitch: -0.66}})// 加载3DTiles纽约数据let city = viewer.scene.primitives.add( await Cesium.Cesium3DTileset.fromIonAssetId(2275207));
});

最终达到的效果如下,画面还不错(我爱说实话!)

划分城市区域

接下来我们通过GeoJSON来划分城市区域,GeoJSON(JavaScript Object Notation, 简称JSON)是一种对各种地理数据结构进行编码的格式,基于Javascript对象表示法的地理空间信息数据交换格式,可以表示几何、特征或者特征集合。

接下来我们调用GeoJson文件加载纽约区域的领域边界:

// 调用 GeoJson 文件加载邻域边界
let neighborhoodsPromise = Cesium.GeoJsonDataSource.load('/public/assets/SampleData/sampleNeighborhoods.geojson');

接下来将加载的地理数据(如街区或区域)添加到 Cesium 地球查看器(viewer)中,并对这些数据进行着色调整,并确保它们贴在地图表面上。

// 贴在地图表面
neighborhoodsPromise.then((dataSource) => {// 将数据添加到查看器viewer.dataSources.add(dataSource);// 把数据进行着色的调整以及放到地图的表面// 拿到区域的实例  Get the array of entitieslet neighborhoodsEntities = dataSource.entities.values;for (let i = 0; i < neighborhoodsEntities.length; i++) {let entity = neighborhoodsEntities[i];// 判断存不存在相应的图形 if (Cesium.defined(entity.polygon)) {entity.name = entity.properties.neighborhood;// 设置多边形颜色entity.polygon.material = Cesium.Color.fromRandom({red: 0.1, // 随机颜色maximumGreen: 0.5, // 最大绿色minimumBlue: 0.5, // 最小蓝色alpha: 0.6 // 透明度});// 设置地形着色entity.polygon.classificationType = Cesium.ClassificationType.TERRAIN;// 设置位置 贴到多边形最底下let polyPositions = entity.polygon.hierarchy.getValue(Cesium.JulianDate.now()).positions;entity.position = Cesium.Ellipsoid.WGS84.scaleToGeocentricSurface(Cesium.BoundingSphere.fromPoints(polyPositions).center,);}}
})

加载地理数据并在地图上显示,同时对加载的多边形进行着色调整,并确保它们贴在地球表面上,并为每个多边形添加标签。

// 生成标签
entity.label = {text: entity.name,showBackground: true,scale: 0.6,horizontalOrigin: Cesium.HorizontalOrigin.CENTER,verticalOrigin: Cesium.VerticalOrigin.BOTTOM,// 设置显示的距离范围distanceDisplayCondition: new Cesium.DistanceDisplayCondition(10, 8000),// 禁用的距离disableDepthTestDistance: 100
}

最终呈现的效果如下所示:

然后我们也可以通过鼠标点击某个标签进行区域的锁定,然后滑动鼠标进行详细查看:

设置地图标记

接下来通过KML文件进行图标标记,KML文件是谷歌公司创建的一种地标性文件,用于记录某一地点、或连续地点的时间、经度、纬度、海拔等地理信息数据,供GE等有关软件使用。

let kmlOptions = {camera : viewer.scene.camera,canvas : viewer.scene.canvas,// 如果我们想要将几何特征(多边形、线串和线性环)固定在地面上,则为 true。clampToGround : true
};
let geocachePromise = Cesium.KmlDataSource.load('/public/assets/SampleData/sampleGeocacheLocations.kml', kmlOptions);

接下来将 geocache 广告牌实体添加到场景中并为其设置样式:

geocachePromise.then(function(dataSource) {// 将新数据作为实体添加到查看器viewer.dataSources.add(dataSource);// 获取实体数组var geocacheEntities = dataSource.entities.values;for (var i = 0; i < geocacheEntities.length; i++) {var entity = geocacheEntities[i];if (Cesium.defined(entity.billboard)) {// 调整垂直原点,使图钉位于地形上entity.billboard.verticalOrigin = Cesium.VerticalOrigin.BOTTOM;entity.billboard.image = '/public/assets/tagpark.png'// 禁用标签以减少混乱entity.label = undefined;// 添加距离显示条件entity.billboard.distanceDisplayCondition = new Cesium.DistanceDisplayCondition(10.0, 20000.0);// 以度为单位计算纬度和经度var cartographicPosition = Cesium.Cartographic.fromCartesian(entity.position.getValue(Cesium.JulianDate.now()));var latitude = Cesium.Math.toDegrees(cartographicPosition.latitude);var longitude = Cesium.Math.toDegrees(cartographicPosition.longitude);// 修改描述var description = '<table class="cesium-infoBox-defaultTable cesium-infoBox-defaultTable-lighter"><tbody>' +'<tr><th>' + "Longitude" + '</th><td>' + longitude.toFixed(5) + '</td></tr>' +'<tr><th>' + "Latitude" + '</th><td>' + latitude.toFixed(5) + '</td></tr>' +'<tr><th>' + "实时人流" + '</th><td>' + Math.floor(Math.random()*20000)  + '</td></tr>' +'<tr><th>' + "安全等级" + '</th><td>' + Math.floor(Math.random()*5)  + '</td></tr>' +'</tbody></table>';entity.description = description;}}
});

最终呈现的效果如下所示,感觉还不错!(我爱说实话)

设置模型运动轨迹

接下来我们实现一个3D模型沿着地图上我们设置的轨迹进行运动,这里需要加载一个czml文件,该文件是一种用于描述三维场景的文本格式,通常与Cesium.js一起使用。它允许开发者以一种结构化的方式描述地球上的实体、图形、动画和其他地理空间信息,从而创建动态的、交互式的地理可视化应用程序。具体代码如下:

// 从czml文件加载模型运动路径
var dronePromise = Cesium.CzmlDataSource.load('/public/assets/SampleData/sampleFlight.czml');// 模型实体
var drone;
dronePromise.then(function(dataSource){viewer.dataSources.add(dataSource);drone = dataSource.entities.getById('Aircraft/Aircraft1');drone.model = {// uri:'/public/assets/SampleData/Models/CesiumDrone.gltf', // 飞机模型uri:'/public/assets/SampleData/Models/ferrari2.gltf', // 汽车模型minimumPixelSize:128, // 最小像素大小maximumScale:1000, // 最大比例silhouetteColor:Cesium.Color.WHITE, // 轮廓颜色silhouetteSize:2 // 轮廓大小}drone.orientation = new Cesium.VelocityOrientationProperty(drone.position); // 运行姿态drone.viewFrom = new Cesium.Cartesian3(0,-30,30) // 运行视角viewer.clock.shouldAnimate = true; // 自动播放
})

最终达到的效果如下:

CZML文件可以手动编写,也可以由各种地理信息系统(GIS)工具或数据源生成。它使用JSON格式,因此易于阅读和编辑。Cesium.js库能够解析和渲染CZML文件,从而在Web浏览器中呈现出动态的地理可视化效果,如下可以看到czml对路径的绘制:

ok,效果完成了,喜欢的朋友点个赞收藏一下吧!

这篇关于Cesium.js--》探秘Cesium背后的3D模型魔力—加载纽约模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901611

相关文章

轻量级在线服装3D定制引擎Myway简介

我写的面向web元宇宙轻量级系列引擎中的另外一个,在线3D定制引擎Myway 3D。 用于在线商品定制,比如个性化服装的定制、日常用品(如杯子)、家装(被套)等物品的在线定制。 特性列表: 可更换衣服款式,按需定制更换模型可实时更改材质颜色可实时添加文本,并可实时修改大小、颜色和角度,支持自定义字体可实时添加艺术图标,并可实时修改大小、颜色和角度,支持翻转、各种对齐可更改衣服图案,按需求定制

一份LLM资源清单围观技术大佬的日常;手把手教你在美国搭建「百万卡」AI数据中心;为啥大模型做不好简单的数学计算? | ShowMeAI日报

👀日报&周刊合集 | 🎡ShowMeAI官网 | 🧡 点赞关注评论拜托啦! 1. 为啥大模型做不好简单的数学计算?从大模型高考数学成绩不及格说起 司南评测体系 OpenCompass 选取 7 个大模型 (6 个开源模型+ GPT-4o),组织参与了 2024 年高考「新课标I卷」的语文、数学、英语考试,然后由经验丰富的判卷老师评判得分。 结果如上图所

大语言模型(LLMs)能够进行推理和规划吗?

大语言模型(LLMs),基本上是经过强化训练的 n-gram 模型,它们在网络规模的语言语料库(实际上,可以说是我们文明的知识库)上进行了训练,展现出了一种超乎预期的语言行为,引发了我们的广泛关注。从训练和操作的角度来看,LLMs 可以被认为是一种巨大的、非真实的记忆库,相当于为我们所有人提供了一个外部的系统 1(见图 1)。然而,它们表面上的多功能性让许多研究者好奇,这些模型是否也能在通常需要系

加载资源文件失败

背景         自己以前装了一个海康的深度学习算法平台,试用期是一个月,过了一个月之后,因为没有有效注册码或者加密狗的支持了导致无法使用,于是打算卸载掉,在卸载一个软件的时候,无论是使用控制面板还是软件自带的卸载功能,总是卸载不掉,提示“加载资源文件失败”。该软体主要包括以下两部分: 用自带卸载功能卸载的时候分别提示如下:     用控制面板卸载的时候反应很慢,最后也是提示这个

js+css二级导航

效果 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN""http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html xmlns="http://www.w3.org/1999/xhtml"><head><meta http-equiv="Con

vue同页面多路由懒加载-及可能存在问题的解决方式

先上图,再解释 图一是多路由页面,图二是路由文件。从图一可以看出每个router-view对应的name都不一样。从图二可以看出层路由对应的组件加载方式要跟图一中的name相对应,并且图二的路由层在跟图一对应的页面中要加上components层,多一个s结尾,里面的的方法名就是图一路由的name值,里面还可以照样用懒加载的方式。 页面上其他的路由在路由文件中也跟图二是一样的写法。 附送可能存在

Linux系统稳定性的奥秘:探究其背后的机制与哲学

在计算机操作系统的世界里,Linux以其卓越的稳定性和可靠性著称,成为服务器、嵌入式系统乃至个人电脑用户的首选。那么,是什么造就了Linux如此之高的稳定性呢?本文将深入解析Linux系统稳定性的几个关键因素,揭示其背后的技术哲学与实践。 1. 开源协作的力量Linux是一个开源项目,意味着任何人都可以查看、修改和贡献其源代码。这种开放性吸引了全球成千上万的开发者参与到内核的维护与优化中,形成了

人工和AI大语言模型成本对比 ai语音模型

这里既有AI,又有生活大道理,无数渺小的思考填满了一生。 上一专题搭建了一套GMM-HMM系统,来识别连续0123456789的英文语音。 但若不是仅针对数字,而是所有普通词汇,可能达到十几万个词,解码过程将非常复杂,识别结果组合太多,识别结果不会理想。因此只有声学模型是完全不够的,需要引入语言模型来约束识别结果。让“今天天气很好”的概率高于“今天天汽很好”的概率,得到声学模型概率高,又符合表达

智能客服到个人助理,国内AI大模型如何改变我们的生活?

引言 随着人工智能(AI)技术的高速发展,AI大模型越来越多地出现在我们的日常生活和工作中。国内的AI大模型在过去几年里取得了显著的进展,不少独创的技术点和实际应用令人瞩目。 那么,国内的AI大模型有哪些独创的技术点?它们在实际应用中又有哪些出色表现呢?此外,普通人又该如何利用这些大模型提升工作和生活的质量和效率呢?本文将为你一一解析。 一、国内AI大模型的独创技术点 多模态学习 多

OpenCompass:大模型测评工具

大模型相关目录 大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容 从0起步,扬帆起航。 大模型应用向开发路径:AI代理工作流大模型应用开发实用开源项目汇总大模型问答项目问答性能评估方法大模型数据侧总结大模型token等基本概念及参数和内存的关系大模型应用开发-华为大模型生态规划从零开始的LLaMA-Factor