数据蒋堂 | 数据分布背后的逻辑

2024-04-13 23:38

本文主要是介绍数据蒋堂 | 数据分布背后的逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

作者:蒋步星

来源:数据蒋堂

本文共1100字,建议阅读7分钟
在分布式数据库及大数据平台中,数据如何分布到多台机器中是个很关键的问题。

640?wx_fmt=png


在分布式数据库及大数据平台中,数据如何分布到多台机器中是个很关键的问题。因为很多运算是数据密集型的,如果数据分布做得不好,就会导致网络传输量变大,从而影响性能。


一般来讲,分布式数据库会提供两种分布策略:对于大表按某个字段(的HASH值)去分布,大多数情况会使用主键,这样可以把数据分拆到多台机器上;对于小表则采用复制性分布,也就是每个机器上都会复制一份。


但是,表的大小并没有绝对的判定标准,很大很小的表都容易识别并采取相应的策略,而那些数据不多不少的中型数据表又该采取哪种策略呢?


要搞清这个问题,我们就要知道数据分布背后的逻辑,什么样的数据分布才算是好的?


合理的数据分布能够有效地减少JOIN运算过程中的网络传输量!这也是数据分布的关键目标。


大部分常规运算都容易分拆到多个机器上分别执行后再汇总,这样,原则上数据只要尽量平均分布就可以由各节点来分摊计算负担。但是JOIN不一样,它涉及关联计算,如果JOIN的两条记录不在同一个节点上,那就需要把它们先传输到一起才能进行运算,这种事当然越少越好了。


那么怎样才能尽量避免JOIN过程中的数据传输呢?


这又要回到我们已经讨论过多次的JOIN类型。回顾一下去年的文章《JOIN运算剖析》,我们把JOIN分成三类:外键、同维、主子。同维表和主子表的JOIN是在主键(或部分)之间进行的,主键不同的两条记录是不可能发生JOIN的,这样,如果数据已经按主键分布的,就不会发生跨节点JOIN的现象了。而外键表的JOIN,维表记录可能被事实表随意引用,无论怎样将维表分布,都有可能发生跨节点JOIN的现象,只有将维表复制到每个节点上去,才能避免JOIN过程中的网络传输。


这样,我们就知道了:同维表和主子表要按主键字段去分布,而维表则要采用复制性策略,每节点都放一份,这样能有效减少跨节点JOIN运算。


但这和大表小表有什么关系?


一般来讲,记录事件的事实表会随着时间推移而不断增大,常常是大表,而这种表之间的JOIN大多数是同维表或主子表(比如订单及明细)关系。而用于外键指向的维表主要是用于存储一些不常变化的属性信息,相对要小一点。于是,本来是事实表要分拆分布、维表要复制分布的策略,就会表现成“大表”分拆、“小表”复制的特征了。


明白了这一点,我们就不会再纠结大表小表的界限在哪里了,其实没有大小之分,而是在数据结构中的地位决定的。


不过,关系数据库中并没有明确的事实表和维表概念,需要我们主动地去识别,有意识地设置分布方案。而且,一定要用主键去分布,随便找一个无关字段去分布,就起不到减少跨节点JOIN的作用了。


有些大数据平台只提供自动(按大小)分布的方案,不能强制复制维表,也不能让同维表和主子表按主键同步分布,这时候分布式计算的效果就不会好了,在选择这些计算体系时需要特别注意。


专栏作者简介

640?

润乾软件创始人、首席科学家


清华大学计算机硕士,中国大数据产业生态联盟专家委员,著有《非线性报表模型原理》等,1989年,中国首个国际奥林匹克数学竞赛团体冠军成员,个人金牌;2000年,创立润乾公司;2004年,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准;2014年,经过7年开发,润乾软件发布不依赖关系代数模型的计算引擎——集算器,有效地提高了复杂结构化大数据计算的开发和运算效率;2015年,润乾软件被福布斯中文网站评为“2015福布斯中国非上市潜力企业100强”;2016、2017年,荣获中国电子信息产业发展研究院评选的“中国软件和信息服务业十大领军人物”;2017年度中国数据大工匠、数据领域专业技术讲堂《数据蒋堂》创办者。


数据蒋堂

《数据蒋堂》的作者蒋步星,从事信息系统建设和数据处理长达20多年的时间。他丰富的工程经验与深厚的理论功底相互融合、创新思想与传统观念的相互碰撞,虚拟与现实的相互交织,产生出了一篇篇的沥血之作。此连载的内容涉及从数据呈现、采集到加工计算再到存储以及挖掘等各个方面。大可观数据世界之远景、小可看技术疑难之细节。针对数据领域一些技术难点,站在研发人员的角度从浅入深,进行全方位、360度无死角深度剖析;对于一些业内观点,站在技术人员角度阐述自己的思考和理解。蒋步星还会对大数据的发展,站在业内专家角度给予预测和推断。静下心来认真研读你会发现,《数据蒋堂》的文章,有的会让用户避免重复前人走过的弯路,有的会让攻城狮面对扎心的难题茅塞顿开,有的会为初入行业的读者提供一把开启数据世界的钥匙,有的甚至会让业内专家大跌眼镜,产生思想交锋。


数据蒋堂第二年往期回顾:

数据蒋堂 | 莫非我就是被时代呼唤的数学人

数据蒋堂 | SQL是描述性语言?

数据蒋堂 | 存储和计算技术的选择

数据蒋堂 | 人工智能中的“人工”

数据蒋堂 | 中国报表漫谈

数据蒋堂 | 内存数据集产生的隐性成本

数据蒋堂 | 多维分析预汇总的功能盲区

数据蒋堂 | 多维分析预汇总的存储容量

数据蒋堂 | 多维分析预汇总的方案探讨

数据蒋堂 | 数据库的封闭性

数据蒋堂 | 内存数据集产生的隐性成本

数据蒋堂 | 前半有序的大数据排序

数据蒋堂 | “后半”有序的分组

数据蒋堂 | 时序数据从分表到分库

数据蒋堂 | BI系统的前置计算

数据蒋堂 | 性能优化是个手艺活

640?wx_fmt=jpeg

这篇关于数据蒋堂 | 数据分布背后的逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901536

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档

在Pandas中进行数据重命名的方法示例

《在Pandas中进行数据重命名的方法示例》Pandas作为Python中最流行的数据处理库,提供了强大的数据操作功能,其中数据重命名是常见且基础的操作之一,本文将通过简洁明了的讲解和丰富的代码示例,... 目录一、引言二、Pandas rename方法简介三、列名重命名3.1 使用字典进行列名重命名3.编

Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南

《Python使用Pandas库将Excel数据叠加生成新DataFrame的操作指南》在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步... 目录一、准备工作二、读取Excel文件三、数据叠加四、处理重复数据(可选)五、保存新DataFram