80页笔记看遍机器学习基本概念、算法、模型,帮新手少走弯路

本文主要是介绍80页笔记看遍机器学习基本概念、算法、模型,帮新手少走弯路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=png

来源:机器之心

本文约1000字,建议阅读6分钟

这份学习笔记帮你及时回顾机器学习概念,带你快速上手。


[ 导读 ] 目前有关机器学习的资料可谓层出不穷,其中既有书籍、课程视频资料,也有很多算法模型的开源项目。不过对于初学者来说,或许阅读学习笔记是一种最容易快速上手的方法。

640?wx_fmt=png

本文要介绍的是一份长约 80 页的学习笔记,旨在总结机器学习的一系列基本概念(如梯度下降、反向传播等),不同的机器学习算法和流行模型,以及一些作者在实践中学到的技巧和经验。

如果你是一个刚刚入门机器学习领域的人,这份学习笔记或许可以帮你少走很多弯路;如果你不是学生,这些笔记还可以在你忘记某些模型或算法时供你快速查阅。必要时,你可以使用 Ctrl+F 搜索自己想知道的概念。

笔记链接:
https://createmomo.github.io/2018/01/23/Super-Machine-Learning-Revision-Notes/#tableofcontents

笔记共分为以下六大部分:
  • 激活函数
  • 梯度下降
  • 参数
  • 正则化
  • 模型
  • 实用窍门

在第一部分“激活函数”中,作者提供了 Sigmoid、tanh、Relu、Leaky Relu 四种常用的机器学习激活函数。

640?wx_fmt=png

第二部分“梯度下降”又分为计算图、反向传播、L2 正则化梯度、梯度消失和梯度爆炸等 12 个小节:

640?wx_fmt=png

为了帮助读者理解,作者举了一些例子,并对很多内容进行了可视化的展示:

640?wx_fmt=png

梯度下降

此外,作者还对代码中用到的一些符号进行了详细解释,对于新手来说非常友好:

640?wx_fmt=png

笔记的第三部分是机器学习中的参数,又分为可学习参数和超参数、参数初始化、超参数调优等几个小节。

为了防止新手走弯路,作者在“参数初始化”部分的开头就提醒道:其实,TensorFlow 等机器学习框架已经提供了鲁棒的参数初始化功能。类似的提醒在笔记中还有很多。

640?wx_fmt=png

笔记的第四部分是正则化,包含 L2 正则化、L1 正则化、Dropout、早停四个小节。

640?wx_fmt=png

第五部分是整份笔记的重中之重,详细描述了逻辑回归、多类分类(Softmax 回归)、迁移学习、多任务学习、卷积神经网络(CNN)、序列模型、Transformer 和 BERT 等八大类机器学习模型。并且,八大类模型下面又分为各个小类进行详解,具体如下所示:

640?wx_fmt=png

解释相对简单的前四类机器学习模型

640?wx_fmt=png
解释最为详尽的卷积神经网络(CNN),包括 Filter/Kernel、LeNet-5、AlexNet、ResNet、目标检测、人脸验证以及神经风格迁移等

640?wx_fmt=png
序列模型,包括常见的循环神经网络模型(RNN)、Gated Recurrent Unit(GRU)、LSTM、双向 RNN、深度 RNN 示例、词嵌入、序列到序列翻译模型示例等

640?wx_fmt=png
Transformer 和 BERT 模型

笔记最后一部分给出了一些“实用窍门”,包括训练/开发/测试数据集、不匹配的数据分布、输入归一化以及误差分析等 6 方面内容。其中有些窍门来自 Deep Learning AI 等在线课程,还有一部分是作者自己总结得到的。

作者的其他笔记

除了这份机器学习笔记之外,作者之前还整理过概率图模型、BiLSTM 上面的 CRF 层等相关笔记。详细目录如下:

640?wx_fmt=png
作者整理的概率图模型复习笔记

640?wx_fmt=jpeg
作者整理的 BiLSTM 上的 CRF 层相关笔记

编辑:黄继彦

校对:王欣640?wx_fmt=jpeg

这篇关于80页笔记看遍机器学习基本概念、算法、模型,帮新手少走弯路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901497

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第