即插即用模块之DO-Conv(深度过度参数化卷积层)详解

2024-04-13 19:04

本文主要是介绍即插即用模块之DO-Conv(深度过度参数化卷积层)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、摘要

二、核心创新点

三、代码详解

四、实验结果

4.1Image Classification

4.2Semantic Segmentation

4.3Object Detection 

五、总结


论文:DOConv论文

代码:DOConv代码

一、摘要

卷积层是卷积神经网络(cnn)的核心组成部分。在本文中,我们建议用额外的深度卷积来增强卷积层,其中每个输入通道与不同的二维核进行卷积。这两个卷积的组合构成了一个过度参数化,因为它增加了可学习的参数,而结果的线性操作可以用单个卷积层来表示。我们把这个深度过度参数化的卷积层称为DO-Conv。我们通过大量的实验表明,仅仅用DO-Conv层替换传统的卷积层就可以提高cnn在许多经典视觉任务上的性能,例如图像分类、检测和分割。此外,在推理阶段,深度卷积被折叠成常规卷积,将计算量减少到完全等同于卷积层的计算量,而没有过度参数化。由于DO-Conv在不增加推理计算复杂度的情况下引入了性能提升,我们主张将其作为传统卷积层的替代方案。

二、核心创新点

深度过参数化卷积层(DO-Conv)是一个具有可训练kernel深度卷积和一个具有可训练常规卷积的组合。给定一个输入, DO-Conv算子的输出与卷积层相同,是一个同维特征。DO-Conv算子是深度卷积算子和卷积算子的复合,如图所示,有两种数学上等价的方法来实现复合:特征复合(a)和核复合(b)。

三、代码详解

# 使用 utf-8 编码
# 导入必要的库
import math  # 导入数学库
import torch  # 导入 PyTorch 库
import numpy as np  # 导入 NumPy 库
from torch.nn import init  # 导入 PyTorch 中的初始化函数
from itertools import repeat  # 导入 itertools 库中的 repeat 函数
from torch.nn import functional as F  # 导入 PyTorch 中的函数式接口
from torch._jit_internal import Optional  # 导入 PyTorch 中的可选模块
from torch.nn.parameter import Parameter  # 导入 PyTorch 中的参数类
from torch.nn.modules.module import Module  # 导入 PyTorch 中的模块类
import collections  # 导入 collections 库# 定义自定义模块 DOConv2d
class DOConv2d(Module):"""DOConv2d 可以作为 torch.nn.Conv2d 的替代。接口与 Conv2d 类似,但有一个例外:1. D_mul:超参数的深度乘法器。请注意,groups 参数在 DO-Conv(groups=1)、DO-DConv(groups=in_channels)、DO-GConv(其他情况)之间切换。"""# 常量声明__constants__ = ['stride', 'padding', 'dilation', 'groups','padding_mode', 'output_padding', 'in_channels','out_channels', 'kernel_size', 'D_mul']# 注解声明__annotations__ = {'bias': Optional[torch.Tensor]}# 初始化函数def __init__(self, in_channels, out_channels, kernel_size, D_mul=None, stride=1,padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'):super(DOConv2d, self).__init__()# 将 kernel_size、stride、padding、dilation 转化为二元元组kernel_size = _pair(kernel_size)stride = _pair(stride)padding = _pair(padding)dilation = _pair(dilation)# 检查 groups 是否合法if in_channels % groups != 0:raise ValueError('in_channels 必须能被 groups 整除')if out_channels % groups != 0:raise ValueError('out_channels 必须能被 groups 整除')# 检查 padding_mode 是否合法valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}if padding_mode not in valid_padding_modes:raise ValueError("padding_mode 必须为 {} 中的一种,但得到 padding_mode='{}'".format(valid_padding_modes, padding_mode))# 初始化模块参数self.in_channels = in_channelsself.out_channels = out_channelsself.kernel_size = kernel_sizeself.stride = strideself.padding = paddingself.dilation = dilationself.groups = groupsself.padding_mode = padding_modeself._padding_repeated_twice = tuple(x for x in self.padding for _ in range(2))#################################### 初始化 D & W ###################################M = self.kernel_size[0]N = self.kernel_size[1]self.D_mul = M * N if D_mul is None or M * N <= 1 else D_mulself.W = Parameter(torch.Tensor(out_channels, in_channels // groups, self.D_mul))init.kaiming_uniform_(self.W, a=math.sqrt(5))if M * N > 1:self.D = Parameter(torch.Tensor(in_channels, M * N, self.D_mul))init_zero = np.zeros([in_channels, M * N, self.D_mul], dtype=np.float32)self.D.data = torch.from_numpy(init_zero)eye = torch.reshape(torch.eye(M * N, dtype=torch.float32), (1, M * N, M * N))d_diag = eye.repeat((in_channels, 1, self.D_mul // (M * N)))if self.D_mul % (M * N) != 0:  # 当 D_mul > M * N 时zeros = torch.zeros([in_channels, M * N, self.D_mul % (M * N)])self.d_diag = Parameter(torch.cat([d_diag, zeros], dim=2), requires_grad=False)else:  # 当 D_mul = M * N 时self.d_diag = Parameter(d_diag, requires_grad=False)################################################################################################### 初始化偏置参数if bias:self.bias = Parameter(torch.Tensor(out_channels))fan_in, _ = init._calculate_fan_in_and_fan_out(self.W)bound = 1 / math.sqrt(fan_in)init.uniform_(self.bias, -bound, bound)else:self.register_parameter('bias', None)# 返回模块配置的字符串表示形式def extra_repr(self):s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'', stride={stride}')if self.padding != (0,) * len(self.padding):s += ', padding={padding}'if self.dilation != (1,) * len(self.dilation):s += ', dilation={dilation}'if self.groups != 1:s += ', groups={groups}'if self.bias is None:s += ', bias=False'if self.padding_mode != 'zeros':s += ', padding_mode={padding_mode}'return s.format(**self.__dict__)# 重新设置状态def __setstate__(self, state):super(DOConv2d, self).__setstate__(state)if not hasattr(self, 'padding_mode'):self.padding_mode = 'zeros'# 辅助函数,执行卷积操作def _conv_forward(self, input, weight):if self.padding_mode != 'zeros':return F.conv2d(F.pad(input, self._padding_repeated_twice, mode=self.padding_mode),weight, self.bias, self.stride,_pair(0), self.dilation, self.groups)return F.conv2d(input, weight, self.bias, self.stride,self.padding, self.dilation, self.groups)# 前向传播函数def forward(self, input):M = self.kernel_size[0]N = self.kernel_size[1]DoW_shape = (self.out_channels, self.in_channels // self.groups, M, N)if M * N > 1:######################### 计算 DoW ################## (input_channels, D_mul, M * N)D = self.D + self.d_diagW = torch.reshape(self.W, (self.out_channels // self.groups, self.in_channels, self.D_mul))# einsum 输出 (out_channels // groups, in_channels, M * N),# 重塑为# (out_channels, in_channels // groups, M, N)DoW = torch.reshape(torch.einsum('ims,ois->oim', D, W), DoW_shape)#######################################################else:# 在这种情况下 D_mul == M * N# 从 (out_channels, in_channels // groups, D_mul) 重塑为 (out_channels, in_channels // groups, M, N)DoW = torch.reshape(self.W, DoW_shape)return self._conv_forward(input, DoW)# 定义辅助函数
def _ntuple(n):def parse(x):if isinstance(x, collections.abc.Iterable):return xreturn tuple(repeat(x, n))return parse# 定义辅助函数,将输入转化为二元元组
_pair = _ntuple(2)

四、实验结果

4.1Image Classification

4.2Semantic Segmentation

4.3Object Detection 

五、总结

DO-Conv是一种深度过参数化卷积层,是一种新颖、简单、通用的提高cnn性能的方法。除了提高现有cnn的训练和最终精度的实际意义之外,在推理阶段不引入额外的计算,我们设想其优势的揭示也可以鼓励进一步探索过度参数化作为网络架构设计的一个新维度。

在未来,对这一相当简单的方法进行理论理解,以在一系列应用中实现令人惊讶的非凡性能改进,将是有趣的。此外,我们希望扩大这些过度参数化卷积层可能有效的应用范围,并了解哪些超参数可以从中受益更多。

这篇关于即插即用模块之DO-Conv(深度过度参数化卷积层)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900959

相关文章

十四、观察者模式与访问者模式详解

21.观察者模式 21.1.课程目标 1、 掌握观察者模式和访问者模式的应用场景。 2、 掌握观察者模式在具体业务场景中的应用。 3、 了解访问者模式的双分派。 4、 观察者模式和访问者模式的优、缺点。 21.2.内容定位 1、 有 Swing开发经验的人群更容易理解观察者模式。 2、 访问者模式被称为最复杂的设计模式。 21.3.观察者模式 观 察 者 模 式 ( Obser

【操作系统】信号Signal超详解|捕捉函数

🔥博客主页: 我要成为C++领域大神🎥系列专栏:【C++核心编程】 【计算机网络】 【Linux编程】 【操作系统】 ❤️感谢大家点赞👍收藏⭐评论✍️ 本博客致力于知识分享,与更多的人进行学习交流 ​ 如何触发信号 信号是Linux下的经典技术,一般操作系统利用信号杀死违规进程,典型进程干预手段,信号除了杀死进程外也可以挂起进程 kill -l 查看系统支持的信号

YOLOv8改进 | SPPF | 具有多尺度带孔卷积层的ASPP【CVPR2018】

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡 专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有40+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转 Atrous Spatial Pyramid Pooling (ASPP) 是一种在深度学习框架中用于语义分割的网络结构,它旨

ABAP怎么把传入的参数刷新到内表里面呢?

1.在执行相关的功能操作之前,优先执行这一段代码,把输入的数据更新入内表里面 DATA: lo_guid TYPE REF TO cl_gui_alv_grid.CALL FUNCTION 'GET_GLOBALS_FROM_SLVC_FULLSCR'IMPORTINGe_grid = lo_guid.CALL METHOD lo_guid->check_changed_data.CALL M

Jitter Injection详解

一、定义与作用 Jitter Injection,即抖动注入,是一种在通信系统中人为地添加抖动的技术。该技术通过在发送端对数据包进行延迟和抖动调整,以实现对整个通信系统的时延和抖动的控制。其主要作用包括: 改善传输质量:通过调整数据包的时延和抖动,可以有效地降低误码率,提高数据传输的可靠性。均衡网络负载:通过对不同的数据流进行不同程度的抖动注入,可以实现网络资源的合理分配,提高整体传输效率。增

iptables(7)扩展模块state

简介         前面文章我们已经介绍了一些扩展模块,如iprange、string、time、connlimit、limit,还有扩展匹配条件如--tcp-flags、icmp。这篇文章我们介绍state扩展模块  state          在 iptables 的上下文中,--state 选项并不是直接关联于一个扩展模块,而是与 iptables 的 state 匹配机制相关,特

Steam邮件推送内容有哪些?配置教程详解!

Steam邮件推送功能是否安全?如何个性化邮件推送内容? Steam作为全球最大的数字游戏分发平台之一,不仅提供了海量的游戏资源,还通过邮件推送为用户提供最新的游戏信息、促销活动和个性化推荐。AokSend将详细介绍Steam邮件推送的主要内容。 Steam邮件推送:促销优惠 每当平台举办大型促销活动,如夏季促销、冬季促销、黑色星期五等,用户都会收到邮件通知。这些邮件详细列出了打折游戏、

探索Elastic Search:强大的开源搜索引擎,详解及使用

🎬 鸽芷咕:个人主页  🔥 个人专栏: 《C++干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 Elastic)是目前全文搜索引擎的首选,相信大家多多少少的都听说过它。它可以快速地储存、搜索和分析海量数据。就连维基百科、Stack Overflow、

python 在pycharm下能导入外面的模块,到terminal下就不能导入

项目结构如下,在ic2ctw.py 中导入util,在pycharm下不报错,但是到terminal下运行报错  File "deal_data/ic2ctw.py", line 3, in <module>     import util 解决方案: 暂时方案:在终端下:export PYTHONPATH=/Users/fujingling/PycharmProjects/PSENe

Java面试八股之JVM参数-XX:+UseCompressedOops的作用

JVM参数-XX:+UseCompressedOops的作用 JVM参数-XX:+UseCompressedOops的作用是启用对象指针压缩(Ordinary Object Pointers compression)。这一特性主要应用于64位的Java虚拟机中,目的是为了减少内存使用。在传统的64位系统中,对象引用(即指针)通常占用8字节(64位),而大部分应用程序实际上并不需要如此大的地址空间