即插即用模块之DO-Conv(深度过度参数化卷积层)详解

2024-04-13 19:04

本文主要是介绍即插即用模块之DO-Conv(深度过度参数化卷积层)详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、摘要

二、核心创新点

三、代码详解

四、实验结果

4.1Image Classification

4.2Semantic Segmentation

4.3Object Detection 

五、总结


论文:DOConv论文

代码:DOConv代码

一、摘要

卷积层是卷积神经网络(cnn)的核心组成部分。在本文中,我们建议用额外的深度卷积来增强卷积层,其中每个输入通道与不同的二维核进行卷积。这两个卷积的组合构成了一个过度参数化,因为它增加了可学习的参数,而结果的线性操作可以用单个卷积层来表示。我们把这个深度过度参数化的卷积层称为DO-Conv。我们通过大量的实验表明,仅仅用DO-Conv层替换传统的卷积层就可以提高cnn在许多经典视觉任务上的性能,例如图像分类、检测和分割。此外,在推理阶段,深度卷积被折叠成常规卷积,将计算量减少到完全等同于卷积层的计算量,而没有过度参数化。由于DO-Conv在不增加推理计算复杂度的情况下引入了性能提升,我们主张将其作为传统卷积层的替代方案。

二、核心创新点

深度过参数化卷积层(DO-Conv)是一个具有可训练kernel深度卷积和一个具有可训练常规卷积的组合。给定一个输入, DO-Conv算子的输出与卷积层相同,是一个同维特征。DO-Conv算子是深度卷积算子和卷积算子的复合,如图所示,有两种数学上等价的方法来实现复合:特征复合(a)和核复合(b)。

三、代码详解

# 使用 utf-8 编码
# 导入必要的库
import math  # 导入数学库
import torch  # 导入 PyTorch 库
import numpy as np  # 导入 NumPy 库
from torch.nn import init  # 导入 PyTorch 中的初始化函数
from itertools import repeat  # 导入 itertools 库中的 repeat 函数
from torch.nn import functional as F  # 导入 PyTorch 中的函数式接口
from torch._jit_internal import Optional  # 导入 PyTorch 中的可选模块
from torch.nn.parameter import Parameter  # 导入 PyTorch 中的参数类
from torch.nn.modules.module import Module  # 导入 PyTorch 中的模块类
import collections  # 导入 collections 库# 定义自定义模块 DOConv2d
class DOConv2d(Module):"""DOConv2d 可以作为 torch.nn.Conv2d 的替代。接口与 Conv2d 类似,但有一个例外:1. D_mul:超参数的深度乘法器。请注意,groups 参数在 DO-Conv(groups=1)、DO-DConv(groups=in_channels)、DO-GConv(其他情况)之间切换。"""# 常量声明__constants__ = ['stride', 'padding', 'dilation', 'groups','padding_mode', 'output_padding', 'in_channels','out_channels', 'kernel_size', 'D_mul']# 注解声明__annotations__ = {'bias': Optional[torch.Tensor]}# 初始化函数def __init__(self, in_channels, out_channels, kernel_size, D_mul=None, stride=1,padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros'):super(DOConv2d, self).__init__()# 将 kernel_size、stride、padding、dilation 转化为二元元组kernel_size = _pair(kernel_size)stride = _pair(stride)padding = _pair(padding)dilation = _pair(dilation)# 检查 groups 是否合法if in_channels % groups != 0:raise ValueError('in_channels 必须能被 groups 整除')if out_channels % groups != 0:raise ValueError('out_channels 必须能被 groups 整除')# 检查 padding_mode 是否合法valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}if padding_mode not in valid_padding_modes:raise ValueError("padding_mode 必须为 {} 中的一种,但得到 padding_mode='{}'".format(valid_padding_modes, padding_mode))# 初始化模块参数self.in_channels = in_channelsself.out_channels = out_channelsself.kernel_size = kernel_sizeself.stride = strideself.padding = paddingself.dilation = dilationself.groups = groupsself.padding_mode = padding_modeself._padding_repeated_twice = tuple(x for x in self.padding for _ in range(2))#################################### 初始化 D & W ###################################M = self.kernel_size[0]N = self.kernel_size[1]self.D_mul = M * N if D_mul is None or M * N <= 1 else D_mulself.W = Parameter(torch.Tensor(out_channels, in_channels // groups, self.D_mul))init.kaiming_uniform_(self.W, a=math.sqrt(5))if M * N > 1:self.D = Parameter(torch.Tensor(in_channels, M * N, self.D_mul))init_zero = np.zeros([in_channels, M * N, self.D_mul], dtype=np.float32)self.D.data = torch.from_numpy(init_zero)eye = torch.reshape(torch.eye(M * N, dtype=torch.float32), (1, M * N, M * N))d_diag = eye.repeat((in_channels, 1, self.D_mul // (M * N)))if self.D_mul % (M * N) != 0:  # 当 D_mul > M * N 时zeros = torch.zeros([in_channels, M * N, self.D_mul % (M * N)])self.d_diag = Parameter(torch.cat([d_diag, zeros], dim=2), requires_grad=False)else:  # 当 D_mul = M * N 时self.d_diag = Parameter(d_diag, requires_grad=False)################################################################################################### 初始化偏置参数if bias:self.bias = Parameter(torch.Tensor(out_channels))fan_in, _ = init._calculate_fan_in_and_fan_out(self.W)bound = 1 / math.sqrt(fan_in)init.uniform_(self.bias, -bound, bound)else:self.register_parameter('bias', None)# 返回模块配置的字符串表示形式def extra_repr(self):s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'', stride={stride}')if self.padding != (0,) * len(self.padding):s += ', padding={padding}'if self.dilation != (1,) * len(self.dilation):s += ', dilation={dilation}'if self.groups != 1:s += ', groups={groups}'if self.bias is None:s += ', bias=False'if self.padding_mode != 'zeros':s += ', padding_mode={padding_mode}'return s.format(**self.__dict__)# 重新设置状态def __setstate__(self, state):super(DOConv2d, self).__setstate__(state)if not hasattr(self, 'padding_mode'):self.padding_mode = 'zeros'# 辅助函数,执行卷积操作def _conv_forward(self, input, weight):if self.padding_mode != 'zeros':return F.conv2d(F.pad(input, self._padding_repeated_twice, mode=self.padding_mode),weight, self.bias, self.stride,_pair(0), self.dilation, self.groups)return F.conv2d(input, weight, self.bias, self.stride,self.padding, self.dilation, self.groups)# 前向传播函数def forward(self, input):M = self.kernel_size[0]N = self.kernel_size[1]DoW_shape = (self.out_channels, self.in_channels // self.groups, M, N)if M * N > 1:######################### 计算 DoW ################## (input_channels, D_mul, M * N)D = self.D + self.d_diagW = torch.reshape(self.W, (self.out_channels // self.groups, self.in_channels, self.D_mul))# einsum 输出 (out_channels // groups, in_channels, M * N),# 重塑为# (out_channels, in_channels // groups, M, N)DoW = torch.reshape(torch.einsum('ims,ois->oim', D, W), DoW_shape)#######################################################else:# 在这种情况下 D_mul == M * N# 从 (out_channels, in_channels // groups, D_mul) 重塑为 (out_channels, in_channels // groups, M, N)DoW = torch.reshape(self.W, DoW_shape)return self._conv_forward(input, DoW)# 定义辅助函数
def _ntuple(n):def parse(x):if isinstance(x, collections.abc.Iterable):return xreturn tuple(repeat(x, n))return parse# 定义辅助函数,将输入转化为二元元组
_pair = _ntuple(2)

四、实验结果

4.1Image Classification

4.2Semantic Segmentation

4.3Object Detection 

五、总结

DO-Conv是一种深度过参数化卷积层,是一种新颖、简单、通用的提高cnn性能的方法。除了提高现有cnn的训练和最终精度的实际意义之外,在推理阶段不引入额外的计算,我们设想其优势的揭示也可以鼓励进一步探索过度参数化作为网络架构设计的一个新维度。

在未来,对这一相当简单的方法进行理论理解,以在一系列应用中实现令人惊讶的非凡性能改进,将是有趣的。此外,我们希望扩大这些过度参数化卷积层可能有效的应用范围,并了解哪些超参数可以从中受益更多。

这篇关于即插即用模块之DO-Conv(深度过度参数化卷积层)详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900959

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP