Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇

2024-04-13 18:12

本文主要是介绍Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

修剪二叉搜索树

给定一个二叉搜索树,同时给定最小边界L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在[L, R]中 (R>=L) 。你可能需要改变树的根节点,所以结果应当返回修剪好的二叉搜索树的新的根节点。

669.修剪二叉搜索树

669.修剪二叉搜索树1

​ 最直接的想法,遍历树然后找到root->val在[L,R]以外的节点删除,通过递归处理返回根节点;

​ 如果此时简单的给出这种代码:

       root->left = trimBST(root->left, low, high);root->right = trimBST(root->right, low, high);

​ 就会忽视掉当前节点不在范围内但是节点左(右)子树可能在范围内的情况;

​ 如下图所示:

​ 也就是在删除节点时,还要对其子树进行判断;至于实现方式可以参考上一题的子树嫁接方法,无须重构二叉树结构;

​ 下面写递归三部曲:

​ 首先确定递归函数参数和返回值:遍历整棵树,做修改,其实不需要返回值也可以完成修剪(其实就是从二叉树中移除节点)的操作;但是有返回值,更方便,可以通过递归函数的返回值来移除节点,不需要额外操作;

​ 其次确定终止条件:修剪的操作并不是在终止条件进行的,所以就是遇到空节点返回就可以了;

​ 最后确定单层递归的逻辑:嫁接子树,此处不再赘述;

​ 递归代码如下:

	TreeNode* traversal(TreeNode* root, int L, int R){if(root == NULL)	return NULL;if(root->val < L){//节点值小于左边边界值TreeNode* tempNode = traversal(root->right, L, R);//此节点右子树中寻找所有大于L的值的节点,继续嵌套递归修剪右子树;return tempNode;}if(root->val > R)	return	traversal(root->left, L, R);//同理,并非直接return子树,而是修剪过后再returnroot->left = traversal(root->left, L, R);//对符合区间条件的根节点左右子树进行操作root->right = traversal(root->right, L, R);return root;}

将有序数组转换为二叉搜索树

将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树。

本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1。

示例:

108.将有序数组转换为二叉搜索树

​ 按题目要求切割数组得到平衡二叉搜索树,则从数组中间作为根节点开始切割;

​ 同时注意循环不变量,因为这里是需要不断对数组进行切割直到子数组的长度为一;

​ 遍历代码如下:

	TreeNode* traversal(vector<int>& nums, int L, int R){//确定函数参数和返回值//这里选择左闭右开的切割区间,则子区间停止切割的终止条件即是数组长度等于零的时候if(L >= R)	return NULL;//单层递归逻辑int mid = (R-L)/2+L;//防止int溢出TreeNode* root = new TreeNode(nums[mid]);//确定根节点root->left = traversal(nums, L, mid);//左闭右开root->right = traversal(nums, mid+1, R);return root;}

把二叉搜索树转化为累加树

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须是二叉搜索树。

示例 1:

538.把二叉搜索树转换为累加树

  • 输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
  • 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

  • 输入:root = [0,null,1]
  • 输出:[1,null,1]

示例 3:

  • 输入:root = [1,0,2]
  • 输出:[3,3,2]

示例 4:

  • 输入:root = [3,2,4,1]
  • 输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值互不相同
  • 给定的树为二叉搜索树。

​ 如果给定的是一个有序数组,则[1, 2, 3, 4]的结果就是[10, 9, 7, 4],那二叉树呢?

​ 从二叉搜索树的最大值开始往前递加,无疑就是处理顺序的改变,即右中左的顺序来遍历整个二叉搜索树,即反中序遍历;

​ 则递归代码如下:

	int sum = 0;//记录前一个节点的数值void traversal(TreeNode* cur){//确定函数参数和返回值:遍历整棵树且无须对返回值进行处理if(!cur)	return;//确定终止条件:为空返回//if(cur->right)	sum += cur->right->val;	单层逻辑traversal(cur->right);cur->val += sum;sum = cur->val;//更新sum//if(cur->left)	sum += cur->left->val;traversal(cur->left);}

​ 整体代码如下:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
private:int sum = 0;//记录前一个节点的数值void traversal(TreeNode* cur){//确定函数参数和返回值:遍历整棵树且无须对返回值进行处理if(!cur)	return;//确定终止条件:为空返回//if(cur->right)	sum += cur->right->val;	单层逻辑traversal(cur->right);cur->val += sum;sum = cur->val;//更新sum//if(cur->left)	sum += cur->left->val;traversal(cur->left);}
public:TreeNode* convertBST(TreeNode* root) {sum = 0;traversal(root);return root;}
};

总结

​ 递归和迭代的思想都要熟悉;

递归

​ 首先是熟知递归函数的参数和返回值:

​ 如何利用才能使算法的性能最优化,例如对返回节点类型、传入int替代vector;

​ (见Day 18)

​ 如果需要搜索整棵二叉树且不用处理递归返回值,递归函数就不要返回值;(这种情况就是本文下半部分介绍的113.路径总和ii)

​ 如果需要搜索整棵二叉树且需要处理递归返回值,递归函数就需要返回值; (这种情况我们在236. 二叉树的最近公共祖先 (opens new window)中介绍)

​ 如果要搜索其中一条符合条件的路径,那么递归一定需要返回值,因为遇到符合条件的路径了就要及时返回;

​ 其次是关于递归函数的终止条件:

​ 有时候终止条件并不是简单的对处理节点判空即可,需要根据具体情境进行判断;

​ 最后是递归函数的单层遍历逻辑:

​ 二叉树题目的逻辑往往不算很难,大多时候可以理解为对一个遍历顺序特殊的数组进行处理,所以遍历顺序尤为重要;

​ 在构建二叉树的节点的时候,一定是选择从根节点开始(中左右),即前序遍历;

​ 在面对二叉搜索树时,一定是选择中序遍历(左中右),这样才能充分利用二叉搜索树的有序性质;

​ 求普通二叉树的属性的时候,一般采取后序遍历(左右中),因为需要返回中节点进行处理;

迭代

​ 迭代最主要的思想就是用栈来模拟树的逻辑,通过不断的push pop得到理想中的出栈顺序;

​ 一般在涉及到递归不是很好处理返回值的时候使用迭代,层序遍历就是一个典型的例子。

这篇关于Day 23 669. 修剪二叉搜索树 108.将有序数组转换为二叉搜索树 538.把二叉搜索树转换为累加树 总结篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/900857

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

Java数字转换工具类NumberUtil的使用

《Java数字转换工具类NumberUtil的使用》NumberUtil是一个功能强大的Java工具类,用于处理数字的各种操作,包括数值运算、格式化、随机数生成和数值判断,下面就来介绍一下Number... 目录一、NumberUtil类概述二、主要功能介绍1. 数值运算2. 格式化3. 数值判断4. 随机

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项

使用Python实现图片和base64转换工具

《使用Python实现图片和base64转换工具》这篇文章主要为大家详细介绍了如何使用Python中的base64模块编写一个工具,可以实现图片和Base64编码之间的转换,感兴趣的小伙伴可以了解下... 简介使用python的base64模块来实现图片和Base64编码之间的转换。可以将图片转换为Bas

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动