算法——马尔可夫与隐马尔可夫模型

2024-04-13 08:36
文章标签 算法 模型 马尔可夫

本文主要是介绍算法——马尔可夫与隐马尔可夫模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

HMM(Hidden Markov Model)是一种统计模型,用来描述一个隐含未知量的马尔可夫过程(马尔可夫过程是一类随机过程,它的原始模型是马尔科夫链),它是结构最简单的动态贝叶斯网,是一种著名的有向图模型,主要用于时序数据建模。在语音识别、自然语言处理等领域有广泛应用

Background requirements:

1、基础的概率学知识

2、动态规划是加分项

3、有实际运用Markov Model的应用会帮助学以致用

NOTE:

对于下面的介绍,我们依据这个节奏,参考。

1)指定模型参数

2)如何估计这些参数 【这个没有进行介绍】

3)利用这些参数进行预测

这三大类适用于任何统计机器学习模型

马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法、序列分类等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。到目前为止,它一直被认为是实现快速精确的语音识别系统的最成功的方法之一。

二、马尔科夫模型的案例之一——天气预报
下面是一个马尔科夫模型在天气预测方面的简单例子。如果第一天是雨天,第二天还是雨天的概率是0.8,是晴天的概率是0.2;如果第一天是晴天,第二天还是晴天的概率是0.6,是雨天的概率是0.4。问:如果第一天下雨了,第二天仍然是雨天的概率是多少?,第十天是晴天的概率是多少?;经过很长一段时间后雨天、晴天的概率分别是多少?

首先构建转移概率矩阵,由于这里每一天的状态就是晴天或者是下雨两种情况,所以矩阵是2x2的,如下:

雨天晴天
0.80.4雨天
0.20.6晴天

注意:每列和为1,分别对雨天、晴天,这样构建出来的就是转移概率矩阵了。如下:

在这里插入图片描述

假设初始状态第一天是雨天,我们记为

在这里插入图片描述

这里【1,0】分别对于雨天,晴天。

初始条件:第一天是雨天,第二天仍然是雨天(记为P1)的概率为:

P1 = AxP0

得到P1 = 【0.8,0.2】,正好满足雨天~雨天概率为0.8,当然这根据所给条件就是这样。

下面计算第十天(记为P9)是晴天概率:
在这里插入图片描述

得到,第十天为雨天概率为0.6668,为晴天的概率为0.3332。

下面计算经过很长一段时间后雨天、晴天的概率,显然就是下面的递推公式了:

在这里插入图片描述

2.2 递推公式的改进

虽然上面构造了一个递推公式,但是直接计算矩阵A的n次方是很难计算的,我们将A进行特征分解(谱分解)一下,得到:

在这里插入图片描述

现在递推公式变成了下面的样子:

在这里插入图片描述

显然,当n趋于无穷即很长一段时间以后,Pn = 【0.67,0.33】。即雨天概率为0.67,晴天概率为0.33。并且,我们发现:初始状态如果是P0 =【0,1】,最后结果仍然是Pn = 【0.67,0.33】。这表明,马尔科夫过程与初始状态无关,跟转移矩阵有关。

一文带你了解隐马尔可夫模型(含详细推导) - 知乎

这篇关于算法——马尔可夫与隐马尔可夫模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/899645

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig