【大语言模型】基础:如何处理文章,向量化与BoW

2024-04-13 06:20

本文主要是介绍【大语言模型】基础:如何处理文章,向量化与BoW,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

词袋模型(BoW)是自然语言处理(NLP)和机器学习中一种简单而广泛使用的文本表示方法。它将文本文档转换为数值特征向量,使得可以对文本数据执行数学和统计操作。词袋模型将文本视为无序的单词集合(或“袋”),忽略语法和单词顺序但保留重数。

我们研究两种类型的词袋向量:

  • 原始计数:实际计算文本中每个单词出现的次数
  • TF-IDF:调整原始计数,以偏好那些在少数文档中大量出现的单词,而不是那些在所有文档中广泛出现的单词

定义

文档语料库

  • 文档是您用例的最小文本单位
  • 语料库是您的文档集合
  • 用例:考虑您正在寻找答案的典型问题
  • 查询:您将用来在语料库中搜索的文本

分词器

分词器是一个程序,它接收文本并将其拆分成更小的单元。一本书可以被拆分成章节、段落、句子、单词。这些都是分词过程的例子。

一旦文本被分词成句子,您就可以将句子分词成单词。

句子

在自然语言中,文本由多个句子组成,句子之间通过如.这样的标点符号分隔。然而,将文本拆分成句子仍然是一个挑战,因为一些.表示缩写,例如。

单词

任何文本都是由单词组成的。有时它们通过空格或标点符号很好地分隔开来。如同句子一样,有些单词包含标点符号,比如U.S.A.to court-martial

词汇表:语料库中使用的独特单词列表。

下面我们用一些实例来演示如何讲一篇长文章进行分割并且将其中的单词向量化等。

import numpy as np
import math
import pandas as pd

1. 下载语料库

我们将使用某些来自阿瑟·柯南·道尔爵士的《波希米亚的丑闻》这一福尔摩斯故事的短片段。

我们将从这本书的第一段开始。

语料库(Corpus):《波希米亚的丑闻》中的所有句子

文档(Document):书中的1个句子

import requestsr = requests.get('https://sherlock-holm.es/stories/plain-text/scan.txt')assert r.status_code == 200with open('scandal_in_bohemia.txt', 'w') as out:out.write(r.content.decode('utf-8'))
lines = [txt for txt in open('scandal_in_bohemia.txt') if len(txt.strip()) > 0]print(lines[:20])# First Paragraph
par = ' '.join([x.strip() for x in lines[7:25]])import textwrap
print(textwrap.fill(par, width=80))

2. 引入NLK库

import nltk
nltk.download('punkt')

3. 引入sentence tokenizer讲一篇文章分割成句子

from nltk.tokenize import sent_tokenize
nltk_sentences = sent_tokenize(par)
nltk_sentences

3. 引入word tokenizer讲一个句子分割成单词

from nltk.tokenize import word_tokenize
nltk_tokens = word_tokenize(nltk_sentences[0])
nltk_tokens

我们也可以利用SpaCy进行类似的转换,代码如下:

import spacy
nlp = spacy.load('en_core_web_sm')
doc = nlp(par)spacy_sentences = list(doc.sents)
spacy_sentencesspacy_tokens = [x for x in spacy_sentences[0]]
spacy_tokens

4. 向量化

下面我们来定义一个function用来显示文章中的单词,方法的输入为向量器,可以是CountVectorizer :

#文字向量化
from sklearn.feature_extraction.text import CountVectorizerdef show_vocabulary(vectorizer):words = vectorizer.get_feature_names_out()print(f'Vocabulary size: {len(words)} words')# we can print ~10 words per linefor l in np.array_split(words, math.ceil(len(words) / 10)):print(''.join([f'{x:<15}' for x in l]))count_small = CountVectorizer(lowercase=False) #没有将单词转化成小写
count_small.fit(nltk_sentences)
show_vocabulary(count_small)输出结果:

  • words = vectorizer.get_feature_names_out(): 此行在向量器对象上调用方法 get_feature_names_out()。此方法返回向量器从数据中学到的特征名称(单词或符号)的数组。这些名称代表转换后的特征矩阵中的列。
  • 循环 for l in np.array_split(words, math.ceil(len(words) / 10)):words 数组分割成较小的块,目标是每块大约10个单词。np.array_split 是一个来自NumPy的函数,用于将数组划分成多个子数组。
  • math.ceil(len(words) / 10) 通过将单词总数除以10并向上取整来计算块的数量,以确保即使总数不是10的完美倍数也包括所有单词
  • ''.join([f'{x:<15}' for x in l]): 在循环内部,列表推导为块 l 中的每个单词生成一个格式化字符串。格式说明符 {x:<15} 为单词 x 添加填充,确保它至少占用15个字符,使输出整齐地排列成列。
  • ''.join(...) 将列表中的所有格式化字符串连接成一个字符串,然后打印。这导致每个单词块被打印在新行上,每个单词之间间隔均匀。

如果我们将lowercase=Ture,讲所有大写转化成小写;输出结果为:

count_small = CountVectorizer(lowercase=True)
count_small.fit(nltk_sentences)
show_vocabulary(count_small)

下面定义另外一个function用来显示向量化的结果:

import os
os.environ["FORCE_COLOR"] = "1"#termcolor 是一个用于给终端文本上色的Python模块。
#此导入对于下面定义的输出函数的视觉方面至关重要。
from termcolor import coloreddef show_bow(vectorizer, bow):words = vectorizer.get_feature_names_out()# we can print ~8 words + coefs per linefor l in np.array_split(list(zip(words, bow)), math.ceil(len(words) / 8)):print(' | '.join([colored(f'{w:<15}:{n:>2}', 'grey') if int(n) == 0 else colored(f'{w:<15}:{n:>2}', on_color='on_yellow', attrs=['bold']) for w, n in l ]))def show_bow_float(vectorizer, bow):words = vectorizer.get_feature_names_out()# we can print ~6 words + coefs per linefor l in np.array_split(list(zip(words, bow)), math.ceil(len(words) / 6)):print(' | '.join([colored(f'{w:<15}:{float(n):>0.2f}', 'grey') if float(n) == 0 else colored(f'{w:<15}:{float(n):>0.2f}', on_color='on_yellow', attrs=['bold']) for w, n in l ]))s = nltk_sentences[0]print(f'Text: "{s}"')
bow = count_small.transform([s])
print(f'BoW Shape: {bow.shape}')
bow = bow.toarray()   # From sparse matrix to dense matrix (Careful with MEMORY)
print(f'BoW Vector: {bow}')show_bow(count_small, bow[0])

函数 show_bow(vectorizer, bow)

  • 目的:显示整数计数的词袋向量。
  • 参数
    • vectorizer:一个向量器对象,具有 get_feature_names_out() 等方法,通常来自诸如scikit-learn(例如,CountVectorizer)的库。
    • bow:一个词袋向量(通常是一个稀疏数组或列表),包含由向量器确定的每个单词的频率计数。
  • 过程
    • 从向量器中检索词汇,并将每个单词与其在 bow 中对应的计数配对。
    • 将单词和计数配对在一起,然后将它们分成每行大约8对。
    • 打印每个单词及其计数,突出显示非零计数(用黄色加粗显示),以便它们在灰色显示的零计数中脱颖而出。

函数 show_bow_float(vectorizer, bow)

  • 目的:显示浮点系数的词袋向量(BoW),适用于如TF-IDF这样的情况,其中计数已标准化。
  • 参数
    • show_bow 类似,但预期 bow 向量包含浮点数。
  • 过程
    • show_bow 类似,但将数字格式化为浮点数,并调整显示以适应每行约6对的格式,因为浮点表示需要额外的空间。

运行结果:

这篇关于【大语言模型】基础:如何处理文章,向量化与BoW的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/899358

相关文章

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

微信公众号脚本-获取热搜自动新建草稿并发布文章

《微信公众号脚本-获取热搜自动新建草稿并发布文章》本来想写一个自动化发布微信公众号的小绿书的脚本,但是微信公众号官网没有小绿书的接口,那就写一个获取热搜微信普通文章的脚本吧,:本文主要介绍微信公众... 目录介绍思路前期准备环境要求获取接口token获取热搜获取热搜数据下载热搜图片给图片加上标题文字上传图片

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面