Python 全栈体系【四阶】(三十)

2024-04-12 22:28

本文主要是介绍Python 全栈体系【四阶】(三十),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第五章 深度学习

四、Tensorflow

请添加图片描述

8. 模型保存与加载

8.1 什么是模型保存与加载

模型训练可能是一个很长的过程,如果每次执行预测之前都重新训练,会非常耗时,所以几乎所有人工智能框架都提供了模型保存与加载功能,使得模型训练完成后,可以保存到文件中,供其它程序使用或继续训练。

8.2 模型保存与加载 API

模型保存与加载通过 tf.train.Saver 对象完成,实例化对象:

  • saver = tf.train.Saver(var_list=None, max_to_keep=5) - var_list: 要保存和还原的变量,可以是一个 dict 或一个列表 - max_to_keep: 要保留的最近检查点文件的最大数量。创建新文件时,会删除较旧的文件
    (如 max_to_keep=5 表示保留 5 个检查点文件)

保存:saver.save(sess, ‘/tmp/ckpt/model’)

加载:saver.restore(sess, ‘/tmp/ckpt/model’)

8.3 案例 1:模型保存/加载

在这里插入图片描述

从执行结果可以看出,如果模型之前经过训练,直接从之前的参数值开始执行迭代,而不是从第一次给的初始值开始。

在这里插入图片描述

9. 数据读取

请添加图片描述

9.1 文件读取机制

TensorFlow 文件读取分为三个步骤:

  • 第一步:将要读取的文件放入文件名队列
  • 第二步:读取文件内容,并实行解码
  • 第三步:批处理,按照指定笔数构建成一个批次取出

在这里插入图片描述

9.2 文件读取 API
9.2.1 文件队列构造

生成一个先入先出的队列, 文件阅读器会需要它来读取数据

  • tf.train.string_input_producer(string_tensor, shuffle=True)
    • string_tensor: 含有文件名的一阶张量
    • shuffle: 是否打乱文件顺序
  • 返回:文件队列
9.2.2 文件读取
  • 文本文件读取:tf.TextLineReader
    • 读取 CSV 文件,默认按行读取
  • 二进制文件读取:tf.FixedLengthRecordReader(record_bytes)
    • 读取每个记录是固定字节的二进制文件
    • record_bytes: 每次读取的字节数
  • 通用读取方法:read(file_queue)
    • 从队列中读取指定数量(行,字节)的内容
    • 返回值:一个 tensor 元组,(文件名, value)
9.2.3 文件内容解码

解码文本文件:tf.decode_csv(records, record_defaults)

  • 将 CSV 文件内容转换为张量,与 tf.TextLineReader 搭配使用
  • 参数:
    • records: 字符串,对应文件中的一行
    • record_defaults: 类型
  • 返回:tensor 对象列表

解码二进制文件:tf.decode_raw(input_bytes, out_type)

  • 将字节转换为由数字表示的张量,与 tf.FixedLengthRecordReader 搭配使用
  • 参数:
    • input_bytes - 待转换字节
    • out_type - 输出类型
  • 返回:转换结果
9.3 案例 2:CSV 文件读取

在这里插入图片描述
在这里插入图片描述

9.4 图片文件读取 API

图像读取器:tf.WholeFileReader

  • 功能:将文件的全部内容作为值输出的 reader
  • read 方法:读取文件内容,返回文件名和文件内容

图像解码器:

  • tf.image.decode_jpeg(constants) : 解码 jpeg 格式
  • tf.image.decode_png(constants) : 解码 png 格式
  • 返回值:3-D 张量,[height, width, channels]

修改图像大小:tf.image.resize(images, size)

  • images:图片数据,3-D 或 4-D 张量
    • 3-D:[长,宽,通道]
    • 4-D:[数量, 长,宽,通道]
  • size:1-D int32 张量,[长、宽] (不需要传通道数)
9.5 案例 3:图片文件读取

在这里插入图片描述
在这里插入图片描述

10. 手写体识别

请添加图片描述

10.1 MNIST 数据集

手写数字的数据集,来自美国国家标准与技术研究所(National Institute of Standards and Technology,NIST),发布于 1998 年。

样本来自 250 个不同人的手写数字,50%高中学生,50%是人口普查局的工作人员。

数字从 0 ~ 9,图片大小是 28×28 像素,训练数据集包含 60000 个样本,测试数据集包含 10000 个样本。数据集的标签是长度为 10 的一维数组,数组中每个元素索引号表示对应数字出现的概率。

下载地址:http://yann.lecun.com/exdb/mnist/

在这里插入图片描述

10.2 任务目标

根据训练集样本进行模型训练

保存模型

加载模型,用于新的手写体数字识别

10.3 网络结构

请添加图片描述

10.4 相关 API

tf.matmul():执行矩阵乘法计算

tf.nn.softmax():softmax 激活函数

tf.reduce_sum():指定维度上求张量和

tf.train.GradientDescentOptimizer():优化器,执行梯度下降

tf.argmax():返回张量最大元素的索引值

10.5 关键代码

定义数据

在这里插入图片描述
模型搭建

在这里插入图片描述
执行训练

在这里插入图片描述
模型评估

在这里插入图片描述
模型测试
在这里插入图片描述

10.6 执行结果

在这里插入图片描述

11. 服饰识别

11.1 数据集介绍

是来自 Zalando 文章的数据集,是时尚版的 MNIST。包括 60,000 个训练集数据,10,000 个测试集数据,每个数据为 28x28 灰度图像,一共有 10 类:

0T-shirt/topT 恤
1Trouser裤子
2Pullover套衫
3Dress衣服
4Coat外套
5Sandal凉鞋
6Shirt衬衫
7Sneaker运动鞋
8Bag
9Ankle boot短靴

在这里插入图片描述

11.2 任务目标

搭建卷积神经网络模型

根据训练集样本进行模型训练

用于新的服饰图片识别

11.3 网络结构

请添加图片描述

11.4 关键代码

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

11.5 执行结果

在这里插入图片描述

这篇关于Python 全栈体系【四阶】(三十)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898409

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操