AI药神:机器学习模型有望提前五年预测白血病!

2024-04-12 19:58

本文主要是介绍AI药神:机器学习模型有望提前五年预测白血病!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=gif

640?wx_fmt=jpeg


来源:药明康德AI


【导读】来自全球多家科研机构的75位科学家在《自然》发表了一项重磅研究:使用血液检测和机器学习技术,可以预测健康个体是否有患急性骨髓性白血病(AML)的风险。这项研究意味着我们可以提早发现AML的高风险人群并进行监测,同时可以进行研发,寻找降低该疾病患病几率的方案。


本周,《自然》上发表了一项重磅研究:一个由来自全球多家科研机构的白血病科学家组成的研究小组使用血液检测和机器学习技术,来预测健康个体是否有患急性骨髓性白血病(AML)的风险。这项研究意味着我们可以提早发现AML的高风险人群并进行监测,同时可以进行研发,寻找降低该疾病患病几率的方案。


640?wx_fmt=jpeg

来自全球多家科研机构的75位作者在Nature发表论文


急性骨髓性白血病(AML)是一种进展迅速、危及生命的血液肿瘤,可以影响所有年龄段的人群。AML患者的癌细胞在骨髓中迅速增殖,并妨碍正常血液细胞的产生,导致出现出血和感染症状,甚至危及生命。近几十年以来,AML主流治疗手段几乎没有任何变化,虽然少数患者被治愈,但对于绝大多数患者来说,这仍然是一种绝症。


640?wx_fmt=jpeg

急性骨髓性白血病是一种进展迅速且危及生命的癌症(图片来源:123RF)


为了揭示AML的病因,研究人员使用一项欧洲大型人口健康及生活方式研究中收集的数据及血液样本来进行调查。这项大型研究在20年内追踪了55万人的数据,其中有一些人后来患上了AML。利用这些人的血液样本数据,研究人员能够回顾在AML出现几年之前,这些患者血液中存在的基因变化。


研究人员开发了一种基因测序工具,针对那些与AML相关的已知基因,对124名AML患者的血液DNA进行了测序,并与676名未患有AML或相关癌症的人进行了对比。值得注意的是,他们发现许多后来患有AML的人基因中出现了特殊的遗传变化,而未患有AML的人则没有出现这种变化。并且,那些后来患上AML的患者基因中的突变数量更多,且这些突变在他们血液细胞中出现的比例也更高。


接下来,研究人员应用了机器学习技术,在电子健康记录中常规记录变量的基础之上,构建了一个AML预测模型。该模型在进行诊断前的6-12个月内,就能够对AML进行预测,其灵敏度和特异性分别达到25.7%和98.2%。该模型在不同年龄组之间的表现是一致的。


640?wx_fmt=jpeg

使用机器学习技术构建的AML预测模型结果示意图(图片来源:《Nature》)


“通常来说,急性骨髓性白血病是一种突发性疾病,”该论文的作者之一、来自Wellcome Sanger Institute和剑桥大学的Grace Collord博士表示:“而此次我们发现,它的病因在患上该疾病的五年之前就可以检测到,这一点让我们非常惊讶。这项研究为我们研发能够检测AML高风险人群的方案,提供了非常重要的科学依据。”


研究人员还表示,希望在这些研究结果的基础上,可以开展大型筛查检测,从而识别出那些具有AML高风险的人群,并推动预防AML进一步发展的相关研究,造福更多的患者。随着人工智能的飞速发展和医疗技术的不断进步,希望这项研究在未来可以为我们带来战胜白血病的新方法。


论文地址:https://www.nature.com/articles/s41586-018-0317-6

参考资料:

[1] Roots of leukemia reveal possibility of predicting people at risk

[2] Leukemia researchers discover way to predict healthy people at risk for developing AML

[3] Prediction of acute myeloid leukaemia risk in healthy individuals


(本文经授权转载自公众号药明康德AI)

640?wx_fmt=gif

640?wx_fmt=png


点击下方“阅读原文”了解云创大数据诚征公安行业总代理事宜 ↓↓↓

这篇关于AI药神:机器学习模型有望提前五年预测白血病!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/898097

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]