代码随想录算法训练营第二十四天|回溯算法理论基础、77.组合

本文主要是介绍代码随想录算法训练营第二十四天|回溯算法理论基础、77.组合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回溯算法理论基础

1.什么是回溯法:

回溯法也可以叫做回溯搜索法,它是一种搜索的方式。

回溯是递归的副产品,只要有递归就会有回溯。

回溯函数也就是递归函数,指的都是一个函数。

2.回溯法的效率: 

虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。

因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?

因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

3.回溯法解决的问题:

回溯法,一般可以解决如下几种问题:

  • 组合问题:N个数里面按一定规则找出k个数的集合
  • 切割问题:一个字符串按一定规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

什么是组合,什么是排列?

组合是不强调元素顺序的,排列是强调元素顺序

例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。

记住组合无序,排列有序,就可以了。

4.如何理解回溯法: 

回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!

因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度

递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。

5.回溯法模板:

在讲二叉树的递归中我们说了递归三部曲,这里我再给大家列出回溯三部曲

  • 回溯函数模板返回值以及参数
  • 回溯函数终止条件
  • 回溯搜索的遍历过程
void backtracking(参数) {if (终止条件) {存放结果;return;}for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {处理节点;backtracking(路径,选择列表); // 递归回溯,撤销处理结果}
}

for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。 

77. 组合

思路:

本题是回溯法的经典题目。

要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题

递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了

那么我把组合问题抽象为如下树形结构:

每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度

那么如何在这个树上遍历,然后收集到我们要的结果集呢?

图中每次搜索到了叶子节点,我们就找到了一个结果。

相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

剪枝优化:我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。

在遍历的过程中有如下代码:

for i in range(startIndex, n + 1):path.append(i) self.backtracking(n, k, i + 1, path, result)path.pop()  

这个遍历的范围是可以剪枝优化的,怎么优化呢? 

来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。

图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。

所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。

如果for循环选择的起始位置之后的元素个数已经不足我们需要的元素个数了,那么就没有必要搜索了。

接下来看一下优化过程如下:

  1. 已经选择的元素个数:path.size();

  2. 还需要的元素个数为: k - path.size();

  3. 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历。(“至多”是一个数学和逻辑上常用的词汇,它表示“不超过”或“最多”的意思。在数学表达式中,至多通常与“≤”(小于或等于)符号相对应。所以,如果你看到“至多x”,你可以理解为“小于或等于x”。)

代码:

未剪枝优化

class Solution:def combine(self, n: int, k: int) -> List[List[int]]:result = [] # 初始化一个空列表result,用于存储所有可能的组合path=[] # 初始化一个空列表path,用于存储当前正在构建的组合self.backtracking(n, k, 1, path, result) # 调用backtracking方法,开始回溯搜索return result # 返回找到的所有组合# 定义了一个名为backtracking的递归方法,用于实际生成组合。def backtracking(self, n, k, startIndex, path, result):if len(path) == k: # 判断当前path列表的长度是否等于k,即是否已经找到了一个完整的组合result.append(path[:]) # 如果path的长度等于k,则将path的当前状态(一个完整的组合)添加到result列表中。注意这里使用了path[:]来复制path列表,以避免直接引用导致后续修改影响结果。return # 找到一个完整的组合后,递归结束,返回上一层for i in range(startIndex, n + 1): # 从startIndex开始,遍历到n,尝试将每个数字i添加到path中path.append(i) # 将当前数字i添加到path中self.backtracking(n, k, i + 1, path, result) # 递归调用backtracking方法,尝试添加下一个数字。这里startIndex更新为i + 1,以确保不会重复添加相同的数字path.pop() # 回溯,将path中的最后一个数字i移除,以便尝试其他可能性

时间复杂度:分析回溯问题的时间复杂度,有一个通用公式:路径长度×搜索树的叶子数。对于本题,它等于O(k⋅C(n,k))

空间复杂度:O(k)

剪枝优化

class Solution:def combine(self, n: int, k: int) -> List[List[int]]:result = [] self.backtracking(n, k, 1, [], result)return resultdef backtracking(self, n, k, startIndex, path, result):if len(path) == k:result.append(path[:])returnfor i in range(startIndex, n - (k - len(path)) + 2):  # 优化的地方path.append(i) self.backtracking(n, k, i + 1, path, result)path.pop()  

 

 

这篇关于代码随想录算法训练营第二十四天|回溯算法理论基础、77.组合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897915

相关文章

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python