【课堂笔记】阿里云基于机器学习的客户流失预警分析

2024-04-12 16:32

本文主要是介绍【课堂笔记】阿里云基于机器学习的客户流失预警分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片会抽空传的。
学习的东西:
1.客户流失预警的分析方法
2.流失预警分析中的关键技术
3.使用机器学习pai进行分析
4.任务:通信公司客户流失预警分析

客户流失:由于企业各种营销手段的实施,而导致客户和企业终止合作的现象
哪些客户易流失呢:以前是用经验模型的方法来分析,找一些对行业有理解的人自己归纳流失用户的特性。
现在是从数据中提取。从已有数据中找出客户的共性。

分析流程

应用:成熟的行业,更关注减少流失而不是拉新
通信:商业:金融:

机器学习及决策树
机器学习:对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习。
通过大量做站,找到seo的方向,其实也是一种低效的机器学习手段。或者说当以计算机的速度来处理seo,就是机器学习的应用了。

常见类型:监督学习和无监督学习
一个有样本,一个没样本,但随着时间推移会得出一些大概率的结果。
分类模型:决策树

如何构建决策树

1、准备工作:
观察数据,明确自变量和因变量
自变量:客户的属性
因变量:最终结果

明确信息度量方式:信息增益
熵:

案例:

从这里就可以知道按照什么方式来判断更好了
基尼系数:

明确分支终止条件
纯度:
记录条数:
循环次数:

构建决策树:
流程:

案例:







决策树算法系列:
一、ID3系列 迭代树3代
核心是信息熵,根据信息增益决定树的节点

拥有的问题:
信息度量不合理:倾向于选择取值多的字段
输入类型单一:离散型
不做剪枝,容易过拟合
c4.5:
用信息增益率代替信息增益
能对连续属性进行离散化,对不完整数据进行处理
进行剪枝

c50:
使用了boosting
前修剪、后修剪

二、CART

集成学习:针对同一数据集,训练多种学习器,来解决同一问题
bagging:
有放回抽样构建多个子集
训练多个分类器
最终结果由各分类器结果投票得出
实现非常简单


要注意分类器之间也是有共通点的,这里的计算是指的所有分类器之间没有任何联系的情况下。
boosting:
重复使用一类学习器来修改训练集
每次训练后根据结果调整样本的权重
每个学习器加权后的线性组合即为最终结果

adaboost

图中变大的代表加了权
stacking:
由两极组成,第一级为初级学习期,第二级为高级学习器
第一级学习器的输出作为第二级学习器的输入。

随机森林 randomforest
由许多决策树组成,树生成的时候采用了随机的方法
smart bagging:不单按行取值,还会按列取值
生成步骤:
随机采样,生成多个样本集

对每个样本集构建决策树
优点:
可以处理多分类
不会过拟合
容易实现并行
对数据集容错能力强

重要概念:
特征工程:最大限度地从原始数据中提取特征以供算法和模型使用
数据预处理:标准化、缩放、缺失值、变换、编码等
特征产生:结合业务数据,派生新的特征
特征选择:通过各种统计量、模型评分等,筛选合适的特征
降维:PCA、LDA等减少特征个数
能用更少的模型得出好的结果,就尽量不要用太多的模型。模型越多,受影响越多。

模型评估:解释&泛华
解释:模型能够很好的解释数据集叫做解释型模型
泛化:把一个模型使用在新的数据集上,如果表现非常糟糕,说明泛化能力差(顾名思义。使用广泛化)
过拟合:在原来的数据集表现的非常好,在另一个数据集上又太差了。这就是泛化能力差,也即是过拟合

客户流失预警的实现流程:

特征选择主要特征,次要特征尽量减少。

使用pai

这篇关于【课堂笔记】阿里云基于机器学习的客户流失预警分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897653

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert