2024Mathorcup(妈妈杯)数学建模C题python代码+数据教学

2024-04-12 14:12

本文主要是介绍2024Mathorcup(妈妈杯)数学建模C题python代码+数据教学,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024Mathorcup数学建模挑战赛(妈妈杯)C题保姆级分析完整思路+代码+数据教学

C题题目:物流网络分拣中心货量预测及人员排班

因为一些不可抗力,下面仅展示部分代码(很少部分部分)和部分分析过程,其余代码看文末

数据处理:

import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.stattools import adfuller
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import pmdarima as pm
from itertools import product
from sklearn.preprocessing import MinMaxScaler
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as nptry:# 尝试使用UTF-8编码读取文件day_df = pd.read_csv('./附件/附件1.csv', encoding='utf-8')
except UnicodeDecodeError:# 如果出现编码错误,则尝试使用GBK编码读取day_df = pd.read_csv('./附件/附件1.csv', encoding='gbk')
day_df# 将'日期'转换为datetime类型以便正确排序
day_df['日期'] = pd.to_datetime(day_df['日期'])# 按'日期'升序排列DataFrame 
sorted_day_df = day_df.sort_values(by=['分拣中心', '日期'])sorted_day_df

可视化:

# Set the font to support Chinese characters
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falseplt.figure(figsize=(10, 6))
for center in sorted_day_df['分拣中心'].unique():center_df = sorted_day_df[sorted_day_df['分拣中心'] == center]plt.plot(center_df['日期'], center_df['货量'], marker='o', label=center)plt.title('日期随货量变化的折线图')
plt.xlabel('日期')
plt.ylabel('货量')
# plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

# 绘制ACF和PACF图
fig, ax = plt.subplots(1, 2, figsize=(12, 4))
plot_acf(center_df['货量'], ax=ax[0])
plot_pacf(center_df['货量'], ax=ax[1])
plt.tight_layout()
plt.show()

for center in centers:center_df = sorted_day_df[sorted_day_df['分拣中心'] == center]center_df.set_index('日期', inplace=True)# 使用SARIMAX而不是ARIMA来考虑外生变量model = SARIMAX(center_df['货量'], exog=center_df['活动'], order=(1, 1, 1))model_fit = model.fit()# 预测时也需要包括外生变量# 假设我们已经有了未来时间段的活动标记数据future_dates = pd.date_range(center_df.index[-1] + pd.Timedelta(days=1), periods=30, freq='D')future_exog = pd.DataFrame(0, index=future_dates, columns=['活动'])  # 假设未来5天内没有活动forecast = model_fit.forecast(steps=30, exog=future_exog)print(f"{center} 的未来 30 天预测货量为:")print(forecast)# 将预测结果转换为DataFrameforecast_df = pd.DataFrame({'分拣中心': center,'日期': future_dates,'货量': forecast.values})all_forecasts.append(forecast_df)# 合并所有分拣中心的预测结果
final_forecast_df = pd.concat(all_forecasts)

预测结果:

其中更详细的思路,各题目思路、代码、讲解视频、成品论文及其他相关内容,可以点击下方群名片哦!

这篇关于2024Mathorcup(妈妈杯)数学建模C题python代码+数据教学的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897355

相关文章

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python