元象4.2B参数 MoE大模型实战

2024-04-12 11:36
文章标签 实战 参数 模型 4.2 moe 元象

本文主要是介绍元象4.2B参数 MoE大模型实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 简介

近期,元象公司推出了其首个Moe大模型XVERSE-MoE-A4.2B。该模型采用了混合专家模型架构(Mixture of Experts),并拥有4.2B的激活参数,其性能可与13B模型相媲美。值得一提的是,这个模型是完全开源的,可以无条件免费商用,这对于中小企业、研究者和开发者来说无疑是一个巨大的福音。他们可以在元象高性能“全家桶”中按需选用,以推动低成本部署。

在元象自研的过程中,他们在相同的语料上训练了2.7万亿token。XVERSE-MoE-A4.2B的实际激活参数量为4.2B,其性能“跳级”超越了XVERSE-13B-2,仅用了30%的计算量,并且减少了50%的训练时间。在与多个开源标杆Llama的比较中,该模型超越了Llama2-13B,接近Llama1-65B的性能。

元象自主研发的MoE高效训练和推理框架,在三个方向实现创新:

  • 性能方面,围绕MoE架构中的专家路由和权重计算逻辑,研发了一套高效融合算子进行计算提效;针对MoE模型高显存和大通信量的挑战,设计出计算、通信和显存卸载的重叠操作,有效提高整体处理吞吐量。

  • 架构方面,为保障模型灵活性与性能,采用更细粒度专家设计,相对于传统MoE(如Mixtral 8x7B)将每个专家大小等同于标准FFN,元象的每个专家大小仅为标准FFN的四分之一;同时区分共享专家与非共享专家,共享专家在计算中保持激活中台,非共享专家需要选择性激活,有利于将通用知识压缩至共享专家参数中,减少非共享专家参数间的知识冗余。

  • 训练方面,引入负载均衡损失项,更好均衡专家间的负载;采用路由器z-loss项,确保训练高效和稳定。

02 环境配置与安装

  1. python 3.10及以上版本

  2. pytorch 1.12及以上版本,推荐2.0及以上版本

  3. 建议使用CUDA 11.8及以上

使用步骤

        本文主要演示的模型为XVERSE-MoE-A4.2B模型,在PAI-DSW使用(单卡A100)。 

下载模型的repo:

from modelscope import snapshot_download
model_dir1 = snapshot_download("xverse/XVERSE-MoE-A4.2B")

03 模型推理

import torch
from modelscope import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("xverse/XVERSE-MoE-A4.2B")
model = AutoModelForCausalLM.from_pretrained("xverse/XVERSE-MoE-A4.2B", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()
inputs = tokenizer('北京的景点:故宫、天坛、万里长城等。\n深圳的景点:', return_tensors='pt').input_ids
inputs = inputs.cuda()
generated_ids = model.generate(inputs, max_new_tokens=64, eos_token_id=tokenizer.eos_token_id, repetition_penalty=1.1)
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))

资源消耗:

单卡A100可运行,如果自己的显卡显存不够,可以考虑使用多张3090显卡,或者对模型进行量化。

04 模型微调和微调后推理

微调代码开源地址: 

https://github.com/modelscope/swift/tree/main/examples/pytorch/llm

SWFIT是魔搭社区官方提供的LLM&AIGC模型微调推理框架,首先从github上将SWIFT clone下来


# 设置pip全局镜像和安装相关的python包
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
git clone https://github.com/modelscope/swift.git
cd swift
pip install .[llm]

模型微调脚本 lora

·

# Experimental environment: A100
# 66GB GPU memory
CUDA_VISIBLE_DEVICES=0 \
swift sft \--model_type xverse-moe-a4_2b \--sft_type lora \--tuner_backend swift \--dtype fp16 \--dataset dureader-robust-zh \--train_dataset_sample -1 \--num_train_epochs 1 \--max_length 1024 \--check_dataset_strategy warning \--lora_dtype fp16 \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules DEFAULT \--gradient_checkpointing false \--batch_size 1 \--weight_decay 0.1 \--learning_rate 1e-4 \--gradient_accumulation_steps 16 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 100 \--save_steps 100 \--save_total_limit 2 \--logging_steps 10 \

   模型微调脚本 (lora+mp)

        可以在消费级显卡上进行训练


# Experimental environment: 4*A100
# 4*20GB GPU memory
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python llm_sft.py \--model_type xverse-moe-a4_2b \--sft_type lora \--tuner_backend swift \--dtype AUTO \--dataset dureader-robust-zh \--train_dataset_sample -1 \--num_train_epochs 1 \--max_length 1024 \--check_dataset_strategy warning \--lora_rank 8 \--lora_alpha 32 \--lora_dropout_p 0.05 \--lora_target_modules DEFAULT \--gradient_checkpointing false \--batch_size 1 \--weight_decay 0.1 \--learning_rate 1e-4 \--gradient_accumulation_steps 16 \--max_grad_norm 0.5 \--warmup_ratio 0.03 \--eval_steps 100 \--save_steps 100 \--save_total_limit 2 \--logging_steps 10 \

模型微调后推理脚本

请将下面--ckpt_dir的值改为--output_dir中实际存储的模型weights目录。


# Experimental environment: A100
# 4*18GB GPU memory
CUDA_VISIBLE_DEVICES=0,1,2,3 \
swift infer \--ckpt_dir "output/xverse-moe-a4_2b/vx-xxx/checkpoint-xxx" \--load_dataset_config true \--max_new_tokens 2048 \--temperature 0.7 \--top_p 0.7 \--repetition_penalty 1. \--do_sample true \--merge_lora false \

微调的可视化结果

训练损失: 

图片

 训练后生成样例

[PROMPT]Task: Question Generation
Context: 爬行垫根据中间材料的不同可以分为:XPE爬行垫、EPE爬行垫、EVA爬行垫、PVC爬行垫;其中XPE爬行垫、EPE爬行垫都属于PE材料加保鲜膜复合而成,都是无异味的环保材料,但是XPE爬行垫是品质较好的爬行垫,韩国进口爬行垫都是这种爬行垫,而EPE爬行垫是国内厂家为了减低成本,使用EPE(珍珠棉)作为原料生产的一款爬行垫,该材料弹性差,易碎,开孔发泡防水性弱。EVA爬行垫、PVC爬行垫是用EVA或PVC作为原材料与保鲜膜复合的而成的爬行垫,或者把图案转印在原材料上,这两款爬行垫通常有异味,如果是图案转印的爬行垫,油墨外露容易脱落。当时我儿子爬的时候,我们也买了垫子,但是始终有味。最后就没用了,铺的就的薄毯子让他爬。
Answer: XPE
Question:[OUTPUT]爬行垫什么材质好<|endoftext|>[LABELS]爬行垫什么材质的好
--------------------------------------------------
[PROMPT]Task: Question Generation
Context: 下载速度达到72mbp/s速度相当快。相当于500兆带宽。在网速计算中, b=bit,B=byte 8×b=1×B 意思是 8个小写的b 才是一个大写B。4M理论下载速度:4M就是4Mb/s 理论下载速度公式:4×1024÷8=512KB /s 请注意按公式单位已经变为 KB/s 依此类推: 2M理论下载速度:2×1024÷8=256KB /s 8M理论下载速度:8×1024÷8=1024KB /s =1MB/s 10M理论下载速度:10×1024÷8=1280KB /s =2M理论下载速度+8M理论下载速度 50M理论下载速度:50×1024÷8=6400KB /s 1Gb理论下载速度:1024×1024÷8=128MB /s 公式:几兆带宽×1024÷8=()KB/s。
Answer: 相当于500兆带宽
Question:[OUTPUT]72m等于多少兆<|endoftext|>[LABELS]72mbps是多少网速

资源消耗

训练lora

图片

训练(lora+mp)

图片

训练后推理

图片

这篇关于元象4.2B参数 MoE大模型实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897018

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

一文带你了解SpringBoot中启动参数的各种用法

《一文带你了解SpringBoot中启动参数的各种用法》在使用SpringBoot开发应用时,我们通常需要根据不同的环境或特定需求调整启动参数,那么,SpringBoot提供了哪些方式来配置这些启动参... 目录一、启动参数的常见传递方式二、通过命令行参数传递启动参数三、使用 application.pro

Python实战之屏幕录制功能的实现

《Python实战之屏幕录制功能的实现》屏幕录制,即屏幕捕获,是指将计算机屏幕上的活动记录下来,生成视频文件,本文主要为大家介绍了如何使用Python实现这一功能,希望对大家有所帮助... 目录屏幕录制原理图像捕获音频捕获编码压缩输出保存完整的屏幕录制工具高级功能实时预览增加水印多平台支持屏幕录制原理屏幕

基于@RequestParam注解之Spring MVC参数绑定的利器

《基于@RequestParam注解之SpringMVC参数绑定的利器》:本文主要介绍基于@RequestParam注解之SpringMVC参数绑定的利器,具有很好的参考价值,希望对大家有所帮助... 目录@RequestParam注解:Spring MVC参数绑定的利器什么是@RequestParam?@

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言