目标检测算法-MSCNN(用于人群计数)

2024-04-12 10:38

本文主要是介绍目标检测算法-MSCNN(用于人群计数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1:首先从模型结构整体理解

 

 

 

 

 

 重要网络结构:

                                    MSB结构

 

                                                                网络架构应用于人群计数

2:从代码层面理解

2.1 MSB结构,就是四种卷积核对输入分别进行卷积,然后叠加起来(多种卷积核可以提取不同大小范围的特征,实现多尺度),然后经过BN归一化,再然后经过relu激活函数进行非线性变换,这就是MSB的结构了,还是很简单的。

def MSB(filters):"""Multi-Scale Blob.Arguments:filters: int, filters num.Returns:f: function, layer func."""params = {'activation': 'relu', 'padding': 'same','kernel_regularizer': l2(5e-4)}def f(x):x1 = Conv2D(filters, 9, **params)(x)x2 = Conv2D(filters, 7, **params)(x)x3 = Conv2D(filters, 5, **params)(x)x4 = Conv2D(filters, 3, **params)(x)x = concatenate([x1, x2, x3, x4])x = BatchNormalization()(x)x = Activation('relu')(x)return xreturn f

2.2 MSCNN 结构,这个其实就是整体的网络架构了,它整合了基本的卷积和池化层,最重要结构就是还整合了MSB多尺度卷积,然后最后的输出他不是简单的全连接,它是通过1X1 的卷积核实现全连接的(有参数喔)(MLP的卷积,这种结构增加了模型的特征提取能力和功能)(实现过程就是,首选input->Conv2D->MSB->MaxPooling->MSB->MSB->Maxpooling->MSB->MSB-Conv2D->Conv2D),数据输入是224X224X3 ,最后输出是56X56X1,也就是3136个点

def MSCNN(input_shape):"""Multi-scale convolutional neural network for crowd counting.Arguments:input_shape: tuple, image shape with (w, h, c).Returns:model: Model, keras model."""inputs = Input(shape=input_shape)x = Conv2D(64, 9, activation='relu', padding='same')(inputs)x = MSB(4 * 16)(x)x = MaxPooling2D()(x)x = MSB(4 * 32)(x)x = MSB(4 * 32)(x)x = MaxPooling2D()(x)x = MSB(3 * 64)(x)x = MSB(3 * 64)(x)x = Conv2D(1000, 1, activation='relu', kernel_regularizer=l2(5e-4))(x)x = Conv2D(1, 1, activation='relu')(x)model = Model(inputs=inputs, outputs=x)return model

 

这篇关于目标检测算法-MSCNN(用于人群计数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896899

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1