USACO-Section2.3 Cow Pedigrees【动态规划】

2024-04-12 06:38

本文主要是介绍USACO-Section2.3 Cow Pedigrees【动态规划】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述:

农民John准备购买一群新奶牛。 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛。这些奶牛间的关系可以用二叉树来表示。这些二叉树总共有N个节点(3 <= N < 200)。这些二叉树有如下性质:
每一个节点的度是0或2。度是这个节点的孩子的数目。
树的高度等于K(1 < K < 100)。高度是从根到最远的那个叶子所需要经过的结点数; 叶子是指没有孩子的节点。
有多少不同的家谱结构? 如果一个家谱的树结构不同于另一个的, 那么这两个家谱就是不同的。输出可能的家谱树的个数除以9901的余数。(翻译来源:NOCOW)

INPUT FORMAT

第1行: 两个空格分开的整数, N和K。

OUTPUT FORMAT

第1行: 一个整数,表示可能的家谱树的个数除以9901的余数。


SAMPLE INPUT

5 3


SAMPLE OUTPUT

2


OUTPUT DETAILS

有5个节点,高为3的两个不同的家谱:

     @                                 @/ \                               / \@   @            和               @   @/ \                                   / \@   @                                 @   @

解题思路:

这道题困扰了我许久。我一直在想如何用树的知识来解决此问题,然后在考虑如何通过二叉树的特性来解决,一开始考虑的是递归循环,通过深搜来得出所有结果,从而判断是否可以得出结果,但是这样做的话时间是指数级的,想了想就放弃了,而且总感觉有其他好方法。然后,在晚上浏览了一下nocow官方的解法,发现真的是神奇。说实话,这种方法并不难理解而且很形象(例如一颗深度为4的树可以由两棵深度为3的树组成,也可以由一棵深度为2或1和一棵深度为3的树组成,只要节点数量对即可,当然,深度为3的树是必须的),但是将一棵二叉树看成两棵子树的和这种动归的思路之前从未考虑过,感到了震撼Orz。官方解释的已经很全面了,下面是代码。


#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MOD 9901
int table[101][202],N,K,c;//table数组用来保存产生第i行第j个节点可能的个数,N为节点个数,K为树的深度,c用来判断数的结构 
int smalltrees[101][202];//保存深度小于i-1且节点数为j的树的个数 int main() {    FILE *fin=fopen("nocows.in","r");FILE *fout=fopen("nocows.out","w");   fscanf (fin,"%d %d",&N,&K);table[1][1]=1;for (int i=2;i<=K;i++) {for (int j=1;j<=N;j+=2)for (int k=1;k<=j-1-k;k+=2) {if (k!=j-1-k) c=2; else c=1;  //判断树的结构是否对称  table[i][j]+=c*(smalltrees[i-2][k]*table[i-1][j-1-k]  // 左子树深度小于i-1+table[i-1][k]*smalltrees[i-2][j-1-k]  // 右子树深度小于i-1+table[i-1][k]*table[i-1][j-1-k]);// 都为i-1table[i][j]%=MOD;}for (int k=0;k<=N;k++) { // 确保接下来第i次迭代中的smalltrees[i-2][j]包含了深度小于i-1且节点数为j的树的个数smalltrees[i-1][k]+=table[i-1][k]+smalltrees[i-2][k]; smalltrees[i-1][k]%=MOD; }}fprintf (fout,"%d\n",table[K][N]);return 0;
}

这篇关于USACO-Section2.3 Cow Pedigrees【动态规划】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896384

相关文章

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

mybatis-plus 实现查询表名动态修改的示例代码

《mybatis-plus实现查询表名动态修改的示例代码》通过MyBatis-Plus实现表名的动态替换,根据配置或入参选择不同的表,本文主要介绍了mybatis-plus实现查询表名动态修改的示... 目录实现数据库初始化依赖包配置读取类设置 myBATis-plus 插件测试通过 mybatis-plu

基于Canvas的Html5多时区动态时钟实战代码

《基于Canvas的Html5多时区动态时钟实战代码》:本文主要介绍了如何使用Canvas在HTML5上实现一个多时区动态时钟的web展示,通过Canvas的API,可以绘制出6个不同城市的时钟,并且这些时钟可以动态转动,每个时钟上都会标注出对应的24小时制时间,详细内容请阅读本文,希望能对你有所帮助...

Vue中动态权限到按钮的完整实现方案详解

《Vue中动态权限到按钮的完整实现方案详解》这篇文章主要为大家详细介绍了Vue如何在现有方案的基础上加入对路由的增、删、改、查权限控制,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、数据库设计扩展1.1 修改路由表(routes)1.2 修改角色与路由权限表(role_routes)二、后端接口设计

前端 CSS 动态设置样式::class、:style 等技巧(推荐)

《前端CSS动态设置样式::class、:style等技巧(推荐)》:本文主要介绍了Vue.js中动态绑定类名和内联样式的两种方法:对象语法和数组语法,通过对象语法,可以根据条件动态切换类名或样式;通过数组语法,可以同时绑定多个类名或样式,此外,还可以结合计算属性来生成复杂的类名或样式对象,详细内容请阅读本文,希望能对你有所帮助...

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Vue3中的动态组件详解

《Vue3中的动态组件详解》本文介绍了Vue3中的动态组件,通过`component:is=动态组件名或组件对象/component`来实现根据条件动态渲染不同的组件,此外,还提到了使用`markRa... 目录vue3动态组件动态组件的基本使用第一种写法第二种写法性能优化解决方法总结Vue3动态组件动态

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后