Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中

2024-04-12 03:36

本文主要是介绍Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近需要做一些向量检索,试试ES

一、准备

系统:MacOS 14.3.1

ElasticSearch:8.13.2

Kibana:8.13.2

本地单机环境,无集群,也不基于Docker

BGE是一个常见的文本转向量的模型,在很多大模型RAG应用中常常能见到,但是ElasticSearch中默认没有。BGE模型有很多版本,本次采用的是bge-base-zh-v1.5。下载地址:

HuggingFace:https://huggingface.co/BAAI/bge-base-zh-v1.5

Modelscope:魔搭社区

在国内的话还是从modelscope上下载会更快一些:

git lfs install
git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh-v1.5.git

下载完后有如下文件(注:可以把其中的.git文件夹删掉以减少体积):

将下载好的文件放到用户当前目录下。

二、Kibana申请试用【机器学习】

导入其他模型必须要使用ES的Machine Learning(机器学习)功能,该功能是收费的,白金版才能使用,因此需要先点击【试用】,试用没有任何复杂的操作和套路,直接点击就行(试用期限为一个月)。

点【模型管理】->【已训练模型】,初始状态下内置以下几个模型:

三、安装Eland工具上传模型

新建终端,安装Eland

pip install eland

安装完后直接运行以下命令:

eland_import_hub_model --url https://XX.XXX.XXX.XXX:9200 -u elastic -p XXXXXXXXX --ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt --hub-model-id 'bge-large-zh-v1.5' --task-type text_embedding --start

换行模式: 

eland_import_hub_model --url https://XX.XXX.XXX.XXX:9200 \
-u elastic -p XXXXXXXXX \
--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt \
--hub-model-id 'bge-large-zh-v1.5' \
--task-type text_embedding \
--start

逐行解释: 

eland_import_hub_model                        -- 上传本地或HuggingFace模型到ES中

--url https://XX.XXX.XXX.XXX:9200        --指定ES地址,注意:用https,且尽量用真实的IP地址,不要用localhost

-u elastic -p XXXXXXXXX                       --指定用户名和密码

--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt     --指定证书路径

--hub-model-id 'bge-large-zh-v1.5'          --指定上传的模型的本地路径,注意:前面不要带/

--task-type text_embedding                     --指定上传的模型的类型,BGE是一个embedding模型

--start                                                       --开始

--hub-model-id 'bge-large-zh-v1.5',这是上传本地模型的写法,如果本地有的话,就不会再去HuggingFace上下载了,免得需要科学上网不好办。

运行完毕后可看到上传成功的信息:

----------------------------------------------------------

注意事项

实际不会像上面一样一帆风顺,运行eland_import_hub_model这一步可能会出现若干问题,往往会令人抓狂,网上相关的资料也比较少。笔者遇到了如下几个问题:

问题1. zsh: no matches found: XXXXX

解决方案:

打开.zshrc

vi ~/.zshrc

添加以下内容:

setopt no_nomatch

:wq保存后,再运行以下命令生效:

source ~/.zshrc

问题2:出现elastic_transport.ConnectionError

具体报错信息:

elastic_transport.ConnectionError: Connection error caused by: ProtocolError(('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')))

这个问题是最复杂的,网上找了很久都没有解决方案。

原因:因为要使用机器学习的功能,开了试用,必须配置x-pack,因此也必须要在用Eland传输数据时指定安全证书。因为官网的Eland示例里是不包含证书的,因此一直都没注意到,直到看到这篇文章后才意识到是证书的问题:使用 Elasticsearch 检测抄袭 (二)。

解决方案:

x-pack的配置在elasticsearch.yml中,这两行默认都是true,不用更改。

指定证书:

--ca-cert /Users/XXXXXXX/elasticsearch-8.13.2/config/certs/http_ca.crt

注意注意:此时千万不要随便瞎改elasticsearch.yml和kibana.yml中的其他配置。

问题3:ValueError: TLS options require scheme to be 'https'

raise ValueError("TLS options require scheme to be 'https'")

ValueError: TLS options require scheme to be 'https'

原因:--url http://XX.XXX.XXX.XXX:9200的URL中没有用https。

解决方案:URL改为用https即可。

参考:Import the trained model and vocabulary | Machine Learning in the Elastic Stack [8.13] | Elastic

四、Kibana中查看

至此模型已经上传成功,启动或刷新Kibana,在其中查看。

点到【模型管理】->【已训练模型】,发现有如下信息(提示:需要同步 ML 作业和已训练模型):

点击【同步作业和已训练模型】->【同步】

同步完后即可看到多了一行,显示状态为“已部署”:

~~至此,bge-base-zh-v1.5模型已成功导入ES,待后续使用啦~~

-----------------------------------------------------------------------------------------------------------

五、其他错误的尝试

本来想看能不能不用Eland,直接把模型放到一个固定的路径下,让ES启动时去加载,也就是采用file-based上传的方式,实际不太行

参考:ELSER – Elastic Learned Sparse EncodeR | Machine Learning in the Elastic Stack [8.13] | Elastic

切换到elasticsearch-8.13.2/config目录下,新建models文件夹

把下载好的bge模型整个放到models下

编辑elasticsearch-8.13.2/config下的elasticsearch.yml文件,增加一行并保存:

xpack.ml.model_repository: file://${path.home}/config/models/

重启ES和Kibana,发现【模型管理】->【已训练模型】下啥都没变化。

这篇关于Eland上传bge-base-zh-v1.5向量化模型到ElasticSearch中的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895995

相关文章

ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法

《ElasticSearch+Kibana通过Docker部署到Linux服务器中操作方法》本文介绍了Elasticsearch的基本概念,包括文档和字段、索引和映射,还详细描述了如何通过Docker... 目录1、ElasticSearch概念2、ElasticSearch、Kibana和IK分词器部署

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

Java实现Elasticsearch查询当前索引全部数据的完整代码

《Java实现Elasticsearch查询当前索引全部数据的完整代码》:本文主要介绍如何在Java中实现查询Elasticsearch索引中指定条件下的全部数据,通过设置滚动查询参数(scrol... 目录需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后需求背景通常情况下

DeepSeek模型本地部署的详细教程

《DeepSeek模型本地部署的详细教程》DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私,在本地成功部署DeepSe... 目录一、环境准备(一)硬件需求(二)软件依赖二、安装Ollama三、下载并部署DeepSeek模型选

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创