【文献分享】机器学习 + 分子动力学(LAMMPS 输入文件)+ 第一性原理 + 热学性质 + 动力学性质

本文主要是介绍【文献分享】机器学习 + 分子动力学(LAMMPS 输入文件)+ 第一性原理 + 热学性质 + 动力学性质,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


================================

分享篇关于机器学习 + 分子动力学 + 第一性原理 + 热学性质 + 动力学性质的文章。

感谢论文的原作者!

关键词:

1. Machine learning,

2. Deep potential,

3. Molecular dynamics

4. Molten salts

5. Thermophysical properties

6. Phase diagram

================================

主要内容

“由于实验数据有限,优化熔盐反应堆和聚光太阳能的熔盐可能具有挑战性。为了解决这个问题,我们利用神经网络势(NNP)对熔盐进行原子建模,并使用广泛流行的 LiCl/KCl 盐作为原型系统。根据本文报告的结果,NNP 表现出显着的准确性,并且与密度泛函理论计算相似。NNP 的可靠性得益于严格的训练数据获取方法,其中涵盖了纯 LiCl、纯 KCl 和 LiCl-KCl(58.8% mol LiCl)系统在不同温度和压力下的原子构型。据观察,NNP 合理地再现了熔融 LiCl/KCl 盐在不同成分、温度和微观结构下的实验物理性质,类似于高度精确的第一原理分子动力学。此外,NNP 用于计算熔融 LiCl-KCl 盐的扩散系数,目前还没有可用的实验数据。由此,我们通过报告熔融 LiCl-KCl 系统中众所周知的 Chemla 效应来验证 NNP。我们进一步利用 NNP 通过固液共存模拟来预测 LiCl-KCl 系统的相图。本研究报告的 NNP 的稳健性和多功能性证明了所开发的 NNP 在克服熔盐 MD 模拟中计算效率和准确性之间长期存在的权衡方面的巨大潜力。”——取自文章摘要。

================================

分析方法

Microstructure Analysis:

1. Radial Distribution Function.

2. Density.

3. Specific Heat Capacity.

4. Ionic conductivities.

5. Viscosity.

================================

================================

Figure 1

图片

Figure 2

图片

Figure 4

图片

Figure 5

图片

Figure 6

图片

Figure 7

图片

Figure 8

图片

Figure 9

图片

Figure 10 LAMMPS input

图片

================================

图片

以上是我们分享的一些经验或者文章的搬运,或有不足,欢迎大家指出!

如有侵权,请联系我立马删除!

详细内容(文章题目、文章链接、附件下载)可在微 信 公 众 号原子与分子模拟获取,欢迎大家关注。

这篇关于【文献分享】机器学习 + 分子动力学(LAMMPS 输入文件)+ 第一性原理 + 热学性质 + 动力学性质的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/894756

相关文章

Golang使用etcd构建分布式锁的示例分享

《Golang使用etcd构建分布式锁的示例分享》在本教程中,我们将学习如何使用Go和etcd构建分布式锁系统,分布式锁系统对于管理对分布式系统中共享资源的并发访问至关重要,它有助于维护一致性,防止竞... 目录引言环境准备新建Go项目实现加锁和解锁功能测试分布式锁重构实现失败重试总结引言我们将使用Go作

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

Python中列表的高级索引技巧分享

《Python中列表的高级索引技巧分享》列表是Python中最常用的数据结构之一,它允许你存储多个元素,并且可以通过索引来访问这些元素,本文将带你深入了解Python列表的高级索引技巧,希望对... 目录1.基本索引2.切片3.负数索引切片4.步长5.多维列表6.列表解析7.切片赋值8.删除元素9.反转列表

Python中处理NaN值的技巧分享

《Python中处理NaN值的技巧分享》在数据科学和数据分析领域,NaN(NotaNumber)是一个常见的概念,它表示一个缺失或未定义的数值,在Python中,尤其是在使用pandas库处理数据时,... 目录NaN 值的来源和影响使用 pandas 的 isna()和 isnull()函数直接比较 Na

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业