【汇率预测】基于matlab模拟退火算法优化BP神经网络CS-BP汇率预测【含Matlab源码 689期】

本文主要是介绍【汇率预测】基于matlab模拟退火算法优化BP神经网络CS-BP汇率预测【含Matlab源码 689期】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。

更多Matlab仿真内容点击👇
Matlab图像处理(进阶版)
路径规划(Matlab)
神经网络预测与分类(Matlab)
优化求解(Matlab)
语音处理(Matlab)
信号处理(Matlab)
车间调度(Matlab)

⛄一、模拟退火算法简介

1 模拟退火算法的应用背景
模拟退火算法提出于1982年。Kirkpatrick等人首先意识到固体退火过程与优化问题之间存在着类似性;Metropolis等人对固体在恒定温度下达到热平衡过程的模拟也给他们以启迪。通过把Metropolis 算法引入到优化过程中,最终得到一种对 Metropolis 算法进行迭代的优化算法,这种算法类似固体退火过程,称之为“模拟退火算法”。
模拟退火算法是一种适合求解大规模组合优化问题的随机搜索算法。目前,模拟退火算法在求解 TSP,VLSI 电路设计等组合优化问题上取得了令人满意的结果。将模拟退火算法同其它的计算智能方法相结合,应用到各类复杂系统的建模和优化问题中也得到了越来越多的重视,已经逐渐成为一种重要的发展方向。

2 模拟退火算法介绍
在这里插入图片描述
3
在这里插入图片描述
在这里插入图片描述
3 模拟退火算法的参数
模拟退火是一种优化算法,它本身是不能独立存在的,需要有一个应用场合,其中温度就是模拟退火需要优化的参数,如果它应用到了聚类分析中,那么就是说聚类分析中有某个或者某几个参数需要优化,而这个参数,或者参数集就是温度所代表的。它可以是某项指标,某项关联度,某个距离等等。

⛄二、部分源代码

%% 基于模拟退火算法优化BP神经网络的汇率预测
clear all
clc
warning off
%% 导入数据
load exchange_rate.mat
x = [];
y = [];
tr_len = 800;
num_input = 10;
for i = 1:length(X)-num_input
x = [x; X(i:i+num_input-1)];
y = [y; X(i+num_input)];
end
%训练集——800个样本
input_train = x(1:tr_len, 😃‘;
output_train = y(1:tr_len)’;
%测试集——52个样本
input_test = x(tr_len+1:end, 😃‘;
output_test = y(tr_len+1:end)’;

%% BP网络设置
%节点个数
[inputnum,N]=size(input_train);%输入节点数量
outputnum=size(output_train,1);%输出节点数量

hiddennum=5;
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train,0,1);
%构建网络
net=newff(inputn,output_train,hiddennum);
%% SA算法参数初始化
nvar=inputnumhiddennum+hiddennum+hiddennumoutputnum+outputnum;
[outputn outputps]=mapminmax(output_train,0,1);% 归一化到【0 1】之间

%% SA算法主程序
lb=-1ones(nvar,1); % 参数取值下界
ub=ones(nvar,1); % 参数取值上界
% 冷却表参数
MarkovLength=10; % 马可夫链长度
DecayScale=0.85; % 衰减参数
StepFactor=0.2; % Metropolis步长因子
Temperature0=8; % 初始温度
Temperatureend=3; % 最终温度
Boltzmann_con=1; % Boltzmann常数
AcceptPoints=0.0; % Metropolis过程中总接受点
% 随机初始化参数
range=ub-lb;
Par_cur=rand(size(lb)).range+lb; % 用Par_cur表示当前解
Par_best_cur=Par_cur; % 用Par_best_cur表示当前最优解
Par_best=rand(size(lb)).range+lb; % 用Par_best表示冷却中的最好解
% 每迭代一次退火(降温)一次,直到满足迭代条件为止
t=Temperature0;
itr_num=0; % 记录迭代次数
while t>Temperatureend
itr_num=itr_num+1;
itr_num
t=DecayScale
t; % 温度更新(降温)
for i=1:MarkovLength
% 在此当前参数点附近随机选下一点
p=0;
while p==0
Par_new=Par_cur+StepFactor.range.(rand(size(lb))-0.5);
% 防止越界
if sum(Par_new>ub)+sum(Par_new<lb)==0
p=1;
end
end
% 检验当前解是否为全局最优解
if (objfun_BP(Par_best,inputnum,hiddennum,outputnum,net,inputn,outputn)>…
objfun_BP(Par_new,inputnum,hiddennum,outputnum,net,inputn,outputn))
% 保留上一个最优解
Par_best_cur=Par_best;
% 此为新的最优解
Par_best=Par_new;
end
% Metropolis过程
if (objfun_BP(Par_cur,inputnum,hiddennum,outputnum,net,inputn,outputn)-…
objfun_BP(Par_new,inputnum,hiddennum,outputnum,net,inputn,outputn)>0)
% 接受新解
Par_cur=Par_new;
AcceptPoints=AcceptPoints+1;
else
changer=-1
(objfun_BP(Par_new,inputnum,hiddennum,outputnum,net,inputn,outputn)…
-objfun_BP(Par_cur,inputnum,hiddennum,outputnum,net,inputn,outputn))/Boltzmann_con
Temperature0;
p1=exp(changer);
if p1>rand
Par_cur=Par_new;
AcceptPoints=AcceptPoints+1;
end
end
end
end
%% 结果显示
x=Par_best’;
%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnumhiddennum);
B1=x(inputnum
hiddennum+1:inputnumhiddennum+hiddennum);
w2=x(inputnum
hiddennum+hiddennum+1:inputnumhiddennum+hiddennum+hiddennumoutputnum);
B2=x(inputnumhiddennum+hiddennum+hiddennumoutputnum+1:inputnumhiddennum+hiddennum+hiddennumoutputnum+outputnum);

net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;

%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.mc = 0.8;%动量系数,[0 1]之间
net.trainParam.goal=0.001;
%网络训练
net=train(net,inputn,outputn);
%网络训练
net=train(net,inputn,outputn);
%% BP训练集预测
BP_sim=sim(net,inputn);
%网络输出反归一化
T_sim=mapminmax(‘reverse’,BP_sim,outputps);
%
figure
plot(1:length(output_train),output_train,‘b-’,‘linewidth’,1)
hold on
plot(1:length(T_sim),T_sim,‘r-.’,‘linewidth’,1)
axis tight
xlabel(‘训练样本’,‘FontSize’,12);
ylabel(‘汇率’,‘FontSize’,12);
legend(‘实际值’,‘预测值’);
string={‘SA-BP预测’}
title(string);
% %% 测试数据归一化
inputn_test=mapminmax(‘apply’,input_test,inputps);
% %预测输出
an=sim(net,inputn_test);
BPsim=mapminmax(‘reverse’,an,outputps);
figure
plot(1:length(output_test), output_test,‘b-’,‘linewidth’,1)
hold on

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]蒋美云.基于模拟退火算法优化的BP神经网络预测模型[J].软件工程. 2018,21(07)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于【汇率预测】基于matlab模拟退火算法优化BP神经网络CS-BP汇率预测【含Matlab源码 689期】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/893486

相关文章

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J